Deep learning segmentation results in precise delineation of the putamen in multiple system atrophy.
Eur Radiol
; 33(10): 7160-7167, 2023 Oct.
Article
en En
| MEDLINE
| ID: mdl-37121929
OBJECTIVES: The precise segmentation of atrophic structures remains challenging in neurodegenerative diseases. We determined the performance of a Deep Neural Patchwork (DNP) in comparison to established segmentation algorithms regarding the ability to delineate the putamen in multiple system atrophy (MSA), Parkinson's disease (PD), and healthy controls. METHODS: We retrospectively included patients with MSA and PD as well as healthy controls. A DNP was trained on manual segmentations of the putamen as ground truth. For this, the cohort was randomly split into a training (N = 131) and test set (N = 120). The DNP's performance was compared with putaminal segmentations as derived by Automatic Anatomic Labelling, Freesurfer and Fastsurfer. For validation, we assessed the diagnostic accuracy of the resulting segmentations in the delineation of MSA vs. PD and healthy controls. RESULTS: A total of 251 subjects (61 patients with MSA, 158 patients with PD, and 32 healthy controls; mean age of 61.5 ± 8.8 years) were included. Compared to the dice-coefficient of the DNP (0.96), we noted significantly weaker performance for AAL3 (0.72; p < .001), Freesurfer (0.82; p < .001), and Fastsurfer (0.84, p < .001). This was corroborated by the superior diagnostic performance of MSA vs. PD and HC of the DNP (AUC 0.93) versus the AUC of 0.88 for AAL3 (p = 0.02), 0.86 for Freesurfer (p = 0.048), and 0.85 for Fastsurfer (p = 0.04). CONCLUSION: By utilization of a DNP, accurate segmentations of the putamen can be obtained even if substantial atrophy is present. This allows for more precise extraction of imaging parameters or shape features from the putamen in relevant patient cohorts. CLINICAL RELEVANCE STATEMENT: Deep learning-based segmentation of the putamen was superior to currently available algorithms and is beneficial for the diagnosis of multiple system atrophy. KEY POINTS: ⢠A Deep Neural Patchwork precisely delineates the putamen and performs equal to human labeling in multiple system atrophy, even when pronounced putaminal volume loss is present. ⢠The Deep Neural Patchwork-based segmentation was more capable to differentiate between multiple system atrophy and Parkinson's disease than the AAL3 atlas, Freesurfer, or Fastsurfer.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Enfermedad de Parkinson
/
Atrofia de Múltiples Sistemas
/
Aprendizaje Profundo
Tipo de estudio:
Guideline
/
Observational_studies
Límite:
Aged
/
Humans
/
Middle aged
Idioma:
En
Revista:
Eur Radiol
Asunto de la revista:
RADIOLOGIA
Año:
2023
Tipo del documento:
Article
País de afiliación:
Alemania
Pais de publicación:
Alemania