Water-Stable Hybrid Lead-Free Perovskite for Negative Temperature Coefficient Thermistors.
Inorg Chem
; 62(19): 7324-7332, 2023 May 15.
Article
en En
| MEDLINE
| ID: mdl-37130306
Negative temperature coefficient (NTC) thermistors feature higher sensitivities and faster response speeds and thereby have particular applications in many fields. However, current NTC thermistors are mostly based on inorganic ceramic materials, which show obvious drawbacks in material synthesis, property modulation, and flexible film fabrication. Herein, we report, for the first time, the promising application of an inorganic-organic hybrid NTC thermistor. A new lead-free hybrid iodo bismuthate [1,1',1â³-(benzene-1,3,5-triyl)tris(3-methyl-1H-imidazol-3-ium)]Bi2I9 [denoted as (Me3TMP)Bi2I9] was synthesized by a "double-free" strategy. (Me3TMP)Bi2I9 features a lead-free binuclear bismuth iodine anion charge compensated by a "classic hydrogen-bond-free" cation. (Me3TMP)Bi2I9 exhibits remarkable stability in water and UV light irradiation and shows the largest temperature sensitivity coefficient among all reported NTC materials. Theoretical calculation and detailed structural analysis disclose that the seriously distorted (BiI6) octahedra are responsible for the intriguing NTC effect for (Me3TMP)Bi2I9.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Inorg Chem
Año:
2023
Tipo del documento:
Article
Pais de publicación:
Estados Unidos