Your browser doesn't support javascript.
loading
Multilegged matter transport: A framework for locomotion on noisy landscapes.
Chong, Baxi; He, Juntao; Soto, Daniel; Wang, Tianyu; Irvine, Daniel; Blekherman, Grigoriy; Goldman, Daniel I.
Afiliación
  • Chong B; Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, North Avenue, Atlanta, GA 30332, USA.
  • He J; School of Physics, Georgia Institute of Technology, 837 State St NW, Atlanta, GA 30332, USA.
  • Soto D; Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, 801 Atlantic Dr NW, Atlanta, GA 30332, USA.
  • Wang T; Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, 801 Atlantic Dr NW, Atlanta, GA 30332, USA.
  • Irvine D; Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, 801 Atlantic Dr NW, Atlanta, GA 30332, USA.
  • Blekherman G; School of Mathematics, Georgia Institute of Technology, 686 Cherry St NW, Atlanta, GA 30332, USA.
  • Goldman DI; School of Mathematics, Georgia Institute of Technology, 686 Cherry St NW, Atlanta, GA 30332, USA.
Science ; 380(6644): 509-515, 2023 May 05.
Article en En | MEDLINE | ID: mdl-37141349
ABSTRACT
Whereas the transport of matter by wheeled vehicles or legged robots can be guaranteed in engineered landscapes such as roads or rails, locomotion prediction in complex environments such as collapsed buildings or crop fields remains challenging. Inspired by the principles of information transmission, which allow signals to be reliably transmitted over "noisy" channels, we developed a "matter-transport" framework that demonstrates that noninertial locomotion can be provably generated over noisy rugose landscapes (heterogeneities on the scale of locomotor dimensions). Experiments confirm that sufficient spatial redundancy in the form of serially connected legged robots leads to reliable transport on such terrain without requiring sensing and control. Further analogies from communication theory coupled with advances in gaits (coding) and sensor-based feedback control (error detection and correction) can lead to agile locomotion in complex terradynamic regimes.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Science Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Science Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos