Your browser doesn't support javascript.
loading
Returning Individual Research Results from Digital Phenotyping in Psychiatry.
Shen, Francis X; Baum, Matthew L; Martinez-Martin, Nicole; Miner, Adam S; Abraham, Melissa; Brownstein, Catherine A; Cortez, Nathan; Evans, Barbara J; Germine, Laura T; Glahn, David C; Grady, Christine; Holm, Ingrid A; Hurley, Elisa A; Kimble, Sara; Lázaro-Muñoz, Gabriel; Leary, Kimberlyn; Marks, Mason; Monette, Patrick J; Onnela, Jukka-Pekka; O'Rourke, P Pearl; Rauch, Scott L; Shachar, Carmel; Sen, Srijan; Vahia, Ipsit; Vassy, Jason L; Baker, Justin T; Bierer, Barbara E; Silverman, Benjamin C.
Afiliación
  • Shen FX; Harvard Medical School.
  • Baum ML; Massachusetts General Hospital.
  • Martinez-Martin N; Harvard Law School.
  • Miner AS; Harvard Medical School.
  • Abraham M; Brigham and Women's Hospital.
  • Brownstein CA; Stanford Center for Biomedical Ethics.
  • Cortez N; Stanford University School of Medicine.
  • Evans BJ; Stanford University School of Medicine.
  • Germine LT; Harvard Medical School.
  • Glahn DC; Massachusetts General Hospital.
  • Grady C; Harvard Medical School.
  • Holm IA; Boston Children's Hospital.
  • Hurley EA; Southern Methodist University School of Law.
  • Kimble S; University of Florida.
  • Lázaro-Muñoz G; Harvard Medical School.
  • Leary K; McLean Hospital.
  • Marks M; Harvard Medical School.
  • Monette PJ; Boston Children's Hospital.
  • Onnela JP; National Institutes of Health.
  • O'Rourke PP; Harvard Medical School.
  • Rauch SL; Boston Children's Hospital.
  • Shachar C; Public Responsibility in Medicine and Research.
  • Sen S; McLean Hospital.
  • Vahia I; Harvard Medical School.
  • Vassy JL; Massachusetts General Hospital.
  • Baker JT; Harvard Medical School.
  • Bierer BE; Harvard University.
  • Silverman BC; Harvard Law School.
Am J Bioeth ; 24(2): 69-90, 2024 Feb.
Article en En | MEDLINE | ID: mdl-37155651
Psychiatry is rapidly adopting digital phenotyping and artificial intelligence/machine learning tools to study mental illness based on tracking participants' locations, online activity, phone and text message usage, heart rate, sleep, physical activity, and more. Existing ethical frameworks for return of individual research results (IRRs) are inadequate to guide researchers for when, if, and how to return this unprecedented number of potentially sensitive results about each participant's real-world behavior. To address this gap, we convened an interdisciplinary expert working group, supported by a National Institute of Mental Health grant. Building on established guidelines and the emerging norm of returning results in participant-centered research, we present a novel framework specific to the ethical, legal, and social implications of returning IRRs in digital phenotyping research. Our framework offers researchers, clinicians, and Institutional Review Boards (IRBs) urgently needed guidance, and the principles developed here in the context of psychiatry will be readily adaptable to other therapeutic areas.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Psiquiatría / Trastornos Mentales Tipo de estudio: Guideline Aspecto: Ethics Límite: Humans Idioma: En Revista: Am J Bioeth Asunto de la revista: ETICA Año: 2024 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Psiquiatría / Trastornos Mentales Tipo de estudio: Guideline Aspecto: Ethics Límite: Humans Idioma: En Revista: Am J Bioeth Asunto de la revista: ETICA Año: 2024 Tipo del documento: Article Pais de publicación: Estados Unidos