Three-dimensional inter-layer optical signal transmission realized by a monolithically integrated semiconductor-based carrier transport structure.
Opt Express
; 31(7): 11820-11828, 2023 Mar 27.
Article
en En
| MEDLINE
| ID: mdl-37155809
In this study, we proposed and demonstrated a brand new type of monolithic photonic devices which realizes the three-dimensional (3D) all-optical switching for inter-layer signal transmission. This device is composed of a vertical Si microrod which serves as optical absorption material within a SiN waveguide in one layer and as an index modulation structure within a SiN microdisk resonator lying in the other layer. The ambipolar photo-carrier transport property in the Si microrod was studied by measuring the resonant wavelength shifts under continuous-wave laser pumping. The ambipolar diffusion length can be extracted to be 0.88â
µm. Based on the ambipolar photo-carrier transport in a Si microrod through different layers, we presented a fully-integrated all-optical switching operation using this Si microrod and a SiN microdisk with a pump-probe technique through the on-chip SiN waveguides. The switching time windows for the on-resonance operation mode and the off-resonance operation mode can be extracted to be 439 ps and 87 ps, respectively. This device shows potential applications for the future all-optical computing and communication with more practical and flexible configurations in monolithic 3D photonic integrated circuits (3D-PICs).
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Opt Express
Asunto de la revista:
OFTALMOLOGIA
Año:
2023
Tipo del documento:
Article
Pais de publicación:
Estados Unidos