Your browser doesn't support javascript.
loading
A Temporal Graph Model to Predict Chemical Transformations in Complex Dissolved Organic Matter.
Plamper, Philipp; Lechtenfeld, Oliver J; Herzsprung, Peter; Groß, Anika.
Afiliación
  • Plamper P; Anhalt University of Applied Sciences, Department Computer Science and Languages, Lohmannstraße 23, Köthen 06366, Germany.
  • Lechtenfeld OJ; Helmholtz Centre for Environmental Research - UFZ, Department of Analytical Chemistry, Research Group BioGeoOmics, Permoserstraße 15, Leipzig 04318, Germany.
  • Herzsprung P; ProVIS - Centre for Chemical Microscopy, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, Leipzig 04318, Germany.
  • Groß A; Helmholtz Centre for Environmental Research - UFZ, Department of Lake Research, Brückstraße 3a, Magdeburg 39114, Germany.
Environ Sci Technol ; 57(46): 18116-18126, 2023 Nov 21.
Article en En | MEDLINE | ID: mdl-37159837
Dissolved organic matter (DOM) is a complex mixture of thousands of natural molecules that undergo constant transformation in the environment, such as sunlight induced photochemical reactions. Despite molecular level resolution from ultrahigh resolution mass spectrometry (UHRMS), trends of mass peak intensities are currently the only way to follow photochemically induced molecular changes in DOM. Many real-world relationships and temporal processes can be intuitively modeled using graph data structures (networks). Graphs enhance the potential and value of AI applications by adding context and interconnections allowing the uncovering of hidden or unknown relationships in data sets. We use a temporal graph model and link prediction to identify transformations of DOM molecules in a photo-oxidation experiment. Our link prediction algorithm simultaneously considers educt removal and product formation for molecules linked by predefined transformation units (oxidation, decarboxylation, etc.). The transformations are further weighted by the extent of intensity change and clustered on the graph structure to identify groups of similar reactivity. The temporal graph is capable of identifying relevant molecules subject to similar reactions and enabling to study their time course. Our approach overcomes previous data evaluation limitations for mechanistic studies of DOM and leverages the potential of temporal graphs to study DOM reactivity by UHRMS.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Luz Solar / Materia Orgánica Disuelta Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Environ Sci Technol Año: 2023 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Luz Solar / Materia Orgánica Disuelta Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Environ Sci Technol Año: 2023 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Estados Unidos