Your browser doesn't support javascript.
loading
High-Expansion Open-Cell Polylactide Foams Prepared by Microcellular Foaming Based on Stereocomplexation Mechanism with Outstanding Oil-Water Separation.
Li, Dongsheng; Zhang, Shuai; Zhao, Zezhong; Miao, Zhenyun; Zhang, Guangcheng; Shi, Xuetao.
Afiliación
  • Li D; Key Laboratory of Macromolecular Science & Technology of Shaanxi Province, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
  • Zhang S; Key Laboratory of Macromolecular Science & Technology of Shaanxi Province, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
  • Zhao Z; Key Laboratory of Macromolecular Science & Technology of Shaanxi Province, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
  • Miao Z; Key Laboratory of Macromolecular Science & Technology of Shaanxi Province, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
  • Zhang G; Key Laboratory of Macromolecular Science & Technology of Shaanxi Province, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
  • Shi X; Key Laboratory of Macromolecular Science & Technology of Shaanxi Province, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
Polymers (Basel) ; 15(9)2023 Apr 22.
Article en En | MEDLINE | ID: mdl-37177130
ABSTRACT
Biodegradable polylactic acid (PLA) foams with open-cell structures are good candidates for oil-water separation. However, the foaming of PLA with high-expansion and uniform cell morphology by the traditional supercritical carbon dioxide microcellular foaming method remains a big challenge due to its low melting strength. Herein, a green facile strategy for the fabrication of open-cell fully biodegradable PLA-based foams is proposed by introducing the unique stereocomplexation mechanism between PLLA and synthesized star-shaped PDLA for the first time. A series of star-shaped PDLA with eight arms (8-s-PDLA) was synthesized with different molecular weights and added into the PLLA as modifiers. PLLA/8-s-PDLA foams with open-cells structure and high expansion ratios were fabricated by microcellular foaming with green supercritical carbon dioxide. In detail, the influences of induced 8-s-PDLA on the crystallization behavior, rheological properties, cell morphology and consequential oil-water separation performance of PLA-based foam were investigated systemically. The addition of 8-s-PDLA induced the formation of SC-PLA, enhancing crystallization by acting as nucleation sites and improving the melting strength through acting as physical cross-linking points. The further microcellular foaming of PLLA/8-s-PDLA resulted in open-cell foams of high porosity and high expansion ratios. With an optimized foaming condition, the PLLA/8-s-PDLA-13K foam exhibited an average cell size of about 61.7 µm and expansion ratio of 24. Furthermore, due to the high porosity of the interconnected open cells, the high-absorption performance of the carbon tetrachloride was up to 37 g/g. This work provides a facile green fabrication strategy for the development of environmentally friendly PLA foams with stable open-cell structures and high expansion ratios for oil-water separation.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Polymers (Basel) Año: 2023 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Polymers (Basel) Año: 2023 Tipo del documento: Article País de afiliación: China