Your browser doesn't support javascript.
loading
GRANDPA: GeneRAtive network sampling using degree and property augmentation applied to the analysis of partially confidential healthcare networks.
Bobak, Carly A; Zhao, Yifan; Levy, Joshua J; O'Malley, A James.
Afiliación
  • Bobak CA; Hanover, NH USA Department of Biomedical Data Science, Dartmouth College.
  • Zhao Y; Hanover, NH USA The Dartmouth Institute for Health Policy and Clinical Practice, Dartmouth College.
  • Levy JJ; Hanover, NH USA Research Computing, Dartmouth College.
  • O'Malley AJ; Hanover, NH USA Department of Biomedical Data Science, Dartmouth College.
Appl Netw Sci ; 8(1): 23, 2023.
Article en En | MEDLINE | ID: mdl-37188323
Protecting medical privacy can create obstacles in the analysis and distribution of healthcare graphs and statistical inferences accompanying them. We pose a graph simulation model which generates networks using degree and property augmentation and provide a flexible R package that allows users to create graphs that preserve vertex attribute relationships and approximating the retention of topological properties observed in the original graph (e.g., community structure). We illustrate our proposed algorithm using a case study based on Zachary's karate network and a patient-sharing graph generated from Medicare claims data in 2019. In both cases, we find that community structure is preserved, and normalized root mean square error between cumulative distributions of the degrees across the generated and the original graphs is low (0.0508 and 0.0514 respectively).
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Appl Netw Sci Año: 2023 Tipo del documento: Article Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Appl Netw Sci Año: 2023 Tipo del documento: Article Pais de publicación: Suiza