Your browser doesn't support javascript.
loading
Thermally Switchable Nanogate Based on Polymer Phase Transition.
Kolbeck, Pauline J; Benaoudia, Dihia; Chazot-Franguiadakis, Léa; Delecourt, Gwendoline; Mathé, Jérôme; Li, Sha; Bonnet, Romeo; Martin, Pascal; Lipfert, Jan; Salvetti, Anna; Boukhet, Mordjane; Bennevault, Véronique; Lacroix, Jean-Christophe; Guégan, Philippe; Montel, Fabien.
Afiliación
  • Kolbeck PJ; Univ Lyon, ENS de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France.
  • Benaoudia D; Department of Physics and Center for NanoScience, LMU Munich, 80799 Munich, Germany.
  • Chazot-Franguiadakis L; Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, 3584 CC Utrecht, The Netherlands.
  • Delecourt G; Université Paris Cité, ITODYS, CNRS, F-75006 Paris, France.
  • Mathé J; Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, UMR CNRS 8232, Sorbonne Université, Paris 75252, France.
  • Li S; Univ Lyon, ENS de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France.
  • Bonnet R; Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, UMR CNRS 8232, Sorbonne Université, Paris 75252, France.
  • Martin P; Université Paris-Saclay, Univ Evry, CNRS, LAMBE, 91000 Evry-Courcouronnes, France.
  • Lipfert J; Université Paris-Saclay, Univ Evry, CNRS, LAMBE, 91000 Evry-Courcouronnes, France.
  • Salvetti A; Université Paris Cité, ITODYS, CNRS, F-75006 Paris, France.
  • Boukhet M; Université Paris Cité, ITODYS, CNRS, F-75006 Paris, France.
  • Bennevault V; Department of Physics and Center for NanoScience, LMU Munich, 80799 Munich, Germany.
  • Lacroix JC; Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, 3584 CC Utrecht, The Netherlands.
  • Guégan P; Centre International de Recherche en Infectiologie, INSERM U111, UMR CNRS 5308, Université Claude Bernard Lyon 1, Lyon 69007, France.
  • Montel F; Center for Molecular Bioengineering (B CUBE), Technical University of Dresden, 01062 Dresden, Germany.
Nano Lett ; 23(11): 4862-4869, 2023 Jun 14.
Article en En | MEDLINE | ID: mdl-37212527
ABSTRACT
Mimicking and extending the gating properties of biological pores is of paramount interest for the fabrication of membranes that could be used in filtration or drug processing. Here, we build a selective and switchable nanopore for macromolecular cargo transport. Our approach exploits polymer graftings within artificial nanopores to control the translocation of biomolecules. To measure transport at the scale of individual biomolecules, we use fluorescence microscopy with a zero-mode waveguide set up. We show that grafting polymers that exhibit a lower critical solution temperature creates a toggle switch between an open and closed state of the nanopore depending on the temperature. We demonstrate tight control over the transport of DNA and viral capsids with a sharp transition (∼1 °C) and present a simple physical model that predicts key features of this transition. Our approach provides the potential for controllable and responsive nanopores in a range of applications.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Nano Lett Año: 2023 Tipo del documento: Article País de afiliación: Francia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Nano Lett Año: 2023 Tipo del documento: Article País de afiliación: Francia
...