Your browser doesn't support javascript.
loading
Sample size and power calculations for causal mediation analysis: A Tutorial and Shiny App.
Qin, Xu.
Afiliación
  • Qin X; Department of Health and Human Development at the School of Education, University of Pittsburgh, 5312 Wesley W. Posvar Hall, 230 South Bouquet Street, Pittsburgh, PA, 15260, USA. xuqin@pitt.edu.
Behav Res Methods ; 56(3): 1738-1769, 2024 Mar.
Article en En | MEDLINE | ID: mdl-37231326
When designing a study for causal mediation analysis, it is crucial to conduct a power analysis to determine the sample size required to detect the causal mediation effects with sufficient power. However, the development of power analysis methods for causal mediation analysis has lagged far behind. To fill the knowledge gap, I proposed a simulation-based method and an easy-to-use web application ( https://xuqin.shinyapps.io/CausalMediationPowerAnalysis/ ) for power and sample size calculations for regression-based causal mediation analysis. By repeatedly drawing samples of a specific size from a population predefined with hypothesized models and parameter values, the method calculates the power to detect a causal mediation effect based on the proportion of the replications with a significant test result. The Monte Carlo confidence interval method is used for testing so that the sampling distributions of causal effect estimates are allowed to be asymmetric, and the power analysis runs faster than if the bootstrapping method is adopted. This also guarantees that the proposed power analysis tool is compatible with the widely used R package for causal mediation analysis, mediation, which is built upon the same estimation and inference method. In addition, users can determine the sample size required for achieving sufficient power based on power values calculated from a range of sample sizes. The method is applicable to a randomized or nonrandomized treatment, a mediator, and an outcome that can be either binary or continuous. I also provided sample size suggestions under various scenarios and a detailed guideline of app implementation to facilitate study designs.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Aplicaciones Móviles Tipo de estudio: Clinical_trials / Guideline Límite: Humans Idioma: En Revista: Behav Res Methods Asunto de la revista: CIENCIAS DO COMPORTAMENTO Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Aplicaciones Móviles Tipo de estudio: Clinical_trials / Guideline Límite: Humans Idioma: En Revista: Behav Res Methods Asunto de la revista: CIENCIAS DO COMPORTAMENTO Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos