Your browser doesn't support javascript.
loading
Development and validation of a radiofrequency ablation treatment planning system for vertebral metastases.
Whyne, Cari M; Underwood, Grace; Davidson, Sean R H; Robert, Normand; Huang, Christine; Akens, Margarete K; Fichtinger, Gabor; Yee, Albert J M; Hardisty, Michael.
Afiliación
  • Whyne CM; Orthopaedic Biomechanics Lab, Holland Bone and Joint Program, Sunnybrook Research Institute, Toronto, ON, Canada. cari.whyne@sunnybrook.ca.
  • Underwood G; Department of Surgery, University of Toronto, Toronto, ON, Canada. cari.whyne@sunnybrook.ca.
  • Davidson SRH; Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada. cari.whyne@sunnybrook.ca.
  • Robert N; School of Computing, Queen's University, Kingston, ON, Canada.
  • Huang C; Techna Institute, University Health Network, Toronto, ON, Canada.
  • Akens MK; Orthopaedic Biomechanics Lab, Holland Bone and Joint Program, Sunnybrook Research Institute, Toronto, ON, Canada.
  • Fichtinger G; Orthopaedic Biomechanics Lab, Holland Bone and Joint Program, Sunnybrook Research Institute, Toronto, ON, Canada.
  • Yee AJM; Department of Surgery, University of Toronto, Toronto, ON, Canada.
  • Hardisty M; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
Int J Comput Assist Radiol Surg ; 18(12): 2339-2347, 2023 Dec.
Article en En | MEDLINE | ID: mdl-37245180
ABSTRACT

PURPOSE:

Bone-targeted radiofrequency ablation (RFA) is widely used in the treatment of vertebral metastases. While radiation therapy utilizes established treatment planning systems (TPS) based on multimodal imaging to optimize treatment volumes, current RFA of vertebral metastases has been limited to qualitative image-based assessment of tumour location to direct probe selection and access. This study aimed to design, develop and evaluate a computational patient-specific RFA TPS for vertebral metastases.

METHODS:

A TPS was developed on the open-source 3D slicer platform, including procedural setup, dose calculation (based on finite element modelling), and analysis/visualization modules. Usability testing was carried out by 7 clinicians involved in the treatment of vertebral metastases on retrospective clinical imaging data using a simplified dose calculation engine. In vivo evaluation was performed in a preclinical porcine model (n = 6 vertebrae).

RESULTS:

Dose analysis was successfully performed, with generation and display of thermal dose volumes, thermal damage, dose volume histograms and isodose contours. Usability testing showed an overall positive response to the TPS as beneficial to safe and effective RFA. The in vivo porcine study showed good agreement between the manually segmented thermally damaged volumes vs. the damage volumes identified from the TPS (Dice Similarity Coefficient = 0.71 ± 0.03, Hausdorff distance = 1.2 ± 0.1 mm).

CONCLUSION:

A TPS specifically dedicated to RFA in the bony spine could help account for tissue heterogeneities in both thermal and electrical properties. A TPS would enable visualization of damage volumes in 2D and 3D, assisting clinicians in decisions about potential safety and effectiveness prior to performing RFA in the metastatic spine.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Ablación por Catéter / Ablación por Radiofrecuencia Tipo de estudio: Prognostic_studies / Qualitative_research Límite: Animals / Humans Idioma: En Revista: Int J Comput Assist Radiol Surg Asunto de la revista: RADIOLOGIA Año: 2023 Tipo del documento: Article País de afiliación: Canadá

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Ablación por Catéter / Ablación por Radiofrecuencia Tipo de estudio: Prognostic_studies / Qualitative_research Límite: Animals / Humans Idioma: En Revista: Int J Comput Assist Radiol Surg Asunto de la revista: RADIOLOGIA Año: 2023 Tipo del documento: Article País de afiliación: Canadá