Your browser doesn't support javascript.
loading
Hierarchical 3D Porous Hydrogen-Substituted Graphdiyne for High-Performance Electrochemical Lithium-Ion Storage.
Man, Zengming; Li, Peng; Liu, Shuaishuai; Zhang, Yuman; Zhu, Xiaolin; Ye, Siyuan; Lu, Wangyang; Chen, Wei; Wu, Guan; Bao, Ningzhong.
Afiliación
  • Man Z; National Engineering Lab for Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China.
  • Li P; Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, P. R. China.
  • Liu S; College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
  • Zhang Y; College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
  • Zhu X; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 210009, People's Republic of China.
  • Ye S; National Engineering Lab for Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China.
  • Lu W; Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, P. R. China.
  • Chen W; National Engineering Lab for Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China.
  • Wu G; Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, P. R. China.
  • Bao N; National Engineering Lab for Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China.
ACS Appl Mater Interfaces ; 15(22): 26910-26917, 2023 Jun 07.
Article en En | MEDLINE | ID: mdl-37246367
ABSTRACT
Graphdiyne (GDY) has realized significant achievements in lithium-ion batteries (LIBs) because of its unique π-conjugated skeleton with sp- and sp2-hybridized carbon atoms. Enriching the accessible surface areas and diffusion pathways of Li ions can realize more storage sites and rapid transport dynamics. Herein, three-dimensional porous hydrogen-substituted GDY (HsGDY) is developed for high-performance Li-ion storage. HsGDY, fabricated via a versatile interface-assisted synthesis strategy, exhibits a large specific surface area (667.9 m2 g-1), a hierarchical porous structure, and an expanded interlayer space, which accelerate Li-ion accessibility and lithiation/delithiation. Owing to this high π-conjugated, conductive, and porous framework, HsGDY exhibits a large reversible capacity (930 mA h g-1 after 100 cycles at 1 A g-1), superior cycle (720 mA h g-1 after 300 cycles at 1 A g-1), and rate (490 mA h g-1 at 5 A g-1) performances. Density functional theory calculations of the low diffusion barrier in the lamination and vertical directions further reveal the fast Li-ion transport kinetics of HsGDY. Additionally, a LiCoO2-HsGDY full cell is constructed, which exhibits a good practical charge/discharge capacity of 128 mA h g-1 and stable cycling behavior. This study highlights the advanced design of next-generation LIBs to sustainably develop the new energy industry.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2023 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2023 Tipo del documento: Article