Cooperative Rh-O5/Ni(Fe) Site for Efficient Biomass Upgrading Coupled with H2 Production.
J Am Chem Soc
; 145(32): 17577-17587, 2023 Aug 16.
Article
en En
| MEDLINE
| ID: mdl-37253225
Designing efficient and durable bifunctional catalysts for 5-hydroxymethylfurfural (HMF) oxidation reaction (HMFOR) and hydrogen evolution reaction (HER) is desirable for the co-production of biomass-upgraded chemicals and sustainable hydrogen, which is limited by the competitive adsorption of hydroxyl species (OHads) and HMF molecules. Here, we report a class of Rh-O5/Ni(Fe) atomic site on nanoporous mesh-type layered double hydroxides with atomic-scale cooperative adsorption centers for highly active and stable alkaline HMFOR and HER catalysis. A low cell voltage of 1.48 V is required to achieve 100 mA cm-2 in an integrated electrolysis system along with excellent stability (>100 h). Operando infrared and X-ray absorption spectroscopic probes unveil that HMF molecules are selectively adsorbed and activated over the single-atom Rh sites and oxidized by in situ-formed electrophilic OHads species on neighboring Ni sites. Theoretical studies further demonstrate that the strong d-d orbital coupling interactions between atomic-level Rh and surrounding Ni atoms in the special Rh-O5/Ni(Fe) structure can greatly facilitate surface electronic exchange-and-transfer capabilities with the adsorbates (OHads and HMF molecules) and intermediates for efficient HMFOR and HER. We also reveal that the Fe sites in Rh-O5/Ni(Fe) structure can promote the electrocatalytic stability of the catalyst. Our findings provide new insights into catalyst design for complex reactions involving competitive adsorptions of multiple intermediates.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
J Am Chem Soc
Año:
2023
Tipo del documento:
Article
País de afiliación:
China
Pais de publicación:
Estados Unidos