Your browser doesn't support javascript.
loading
Nanoscale Thermometry of Plasmonic Structures via Raman Shifts in Copper Phthalocyanine.
Li, Pan; Askes, Sven H C; Del Pino Rosendo, Esther; Ariese, Freek; Ramanan, Charusheela; von Hauff, Elizabeth; Baldi, Andrea.
Afiliación
  • Li P; Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, Netherlands.
  • Askes SHC; Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, Netherlands.
  • Del Pino Rosendo E; Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
  • Ariese F; Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, Netherlands.
  • Ramanan C; Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, Netherlands.
  • von Hauff E; Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
  • Baldi A; Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, Netherlands.
J Phys Chem C Nanomater Interfaces ; 127(20): 9690-9698, 2023 May 25.
Article en En | MEDLINE | ID: mdl-37255925
Temperature measurements at the nanoscale are vital for the application of plasmonic structures in medical photothermal therapy and materials science but very challenging to realize in practice. In this work, we exploit a combination of surface-enhanced Raman spectroscopy together with the characteristic temperature dependence of the Raman peak maxima observed in ß-phase copper phthalocyanine (ß-CuPc) to measure the surface temperature of plasmonic gold nanoparticles under laser irradiation. We begin by measuring the temperature-dependent Raman shifts of the three most prominent modes of ß-CuPc films coated on an array of Au nanodisks over a temperature range of 100-500 K. We then use these calibration curves to determine the temperature of an array of Au nanodisks irradiated with varying laser powers. The extracted temperatures agree quantitatively with the ones obtained via numerical modeling of electromagnetic and thermodynamic properties of the irradiated array. Thin films of ß-CuPc display low extinction coefficients in the blue-green region of the visible spectrum as well as exceptional thermal stability, allowing a wide temperature range of operation of our Raman thermometer, with minimal optical distortion of the underlying structures. Thanks to the strong thermal response of the Raman shifts in ß-CuPc, our work opens the opportunity to investigate photothermal effects at the nanoscale in real time.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: J Phys Chem C Nanomater Interfaces Año: 2023 Tipo del documento: Article País de afiliación: Países Bajos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: J Phys Chem C Nanomater Interfaces Año: 2023 Tipo del documento: Article País de afiliación: Países Bajos Pais de publicación: Estados Unidos