Your browser doesn't support javascript.
loading
Development and validation of a simple-to-use nomogram for self-screening the risk of dyslipidemia.
Lan, Jinyan; Zhou, Xueqing; Huang, Qian; Zhao, Li; Li, Penghua; Xi, Maomao; Luo, Meng; Wu, Qiong; Tang, Lixu.
Afiliación
  • Lan J; Martial Arts Academy, Wuhan Sports University, No. 461 Luoyu Rd., Hongshan District, Wuhan, 430079, Hubei, China.
  • Zhou X; Physical Examination Center, Renmin Hospital of Wuhan University, Wuhan, China.
  • Huang Q; Hubei Institute of Sport Science, Wuhan, China.
  • Zhao L; Hubei Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Wuhan, China.
  • Li P; Martial Arts Academy, Wuhan Sports University, No. 461 Luoyu Rd., Hongshan District, Wuhan, 430079, Hubei, China.
  • Xi M; Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, China.
  • Luo M; Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, China.
  • Wu Q; Lanzhou University Second Hospital, Lanzhou, China.
  • Tang L; Martial Arts Academy, Wuhan Sports University, No. 461 Luoyu Rd., Hongshan District, Wuhan, 430079, Hubei, China. tanglixu@126.com.
Sci Rep ; 13(1): 9169, 2023 06 06.
Article en En | MEDLINE | ID: mdl-37280274
This study aimed to help healthy adults achieve self-screening by analyzing the quantitative relationship between body composition index measurements (BMI, waist-to-hip ratio, etc.) and dyslipidemia and establishing a logical risk prediction model for dyslipidemia. We performed a cross-sectional study and collected relevant data from 1115 adults between November 2019 and August 2020. The least absolute shrinkage selection operator (LASSO) regression analysis was performed to select the best predictor variables, and multivariate logistic regression analysis was used to construct the prediction model. In this study, a graphic tool including 10 predictor variables (a "nomogram," see the precise definition in the text) was constructed to predict the risk of dyslipidemia in healthy adults. A calibration diagram, receiver operating characteristic (ROC) curve, and decision curve analysis (DCA) were used to verify the model's utility. Our proposed dyslipidemia nomogram showed good discriminative ability with a C-index of 0.737 (95% confidence interval, 0.70-0.773). In the internal validation, a high C-index value of 0.718 was achieved. DCA showed a dyslipidemia threshold probability of 2-45%, proving the value of the nomogram for clinical application for dyslipidemia. This nomogram may be useful for self-screening the risk of dyslipidemia in healthy adults.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Nomogramas / Dislipidemias Tipo de estudio: Diagnostic_studies / Etiology_studies / Observational_studies / Prevalence_studies / Prognostic_studies / Risk_factors_studies / Screening_studies Límite: Adult / Humans Idioma: En Revista: Sci Rep Año: 2023 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Nomogramas / Dislipidemias Tipo de estudio: Diagnostic_studies / Etiology_studies / Observational_studies / Prevalence_studies / Prognostic_studies / Risk_factors_studies / Screening_studies Límite: Adult / Humans Idioma: En Revista: Sci Rep Año: 2023 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido