Evaluation of the Influence of Build Orientation on the Surface Roughness and Flexural Strength of 3D-Printed Denture Base Resin and Its Comparison with CAD-CAM Milled Denture Base Resin.
Eur J Dent
; 18(1): 321-328, 2024 Feb.
Article
en En
| MEDLINE
| ID: mdl-37295454
OBJECTIVES: The purpose of this study was to determine the surface roughness and flexural strength of a three-dimensional (3D)-printed denture base resin printed with two different build plate orientations and to compare them with a computer-aided design-computer-aided manufacture (CAD-CAM) milled denture base resin. MATERIALS AND METHODS: Sixty-six specimens (n = 22/group) were prepared by 3D printing and CAD-CAM technology. The group A and B specimens were 3D-printed bar-shaped denture base specimens printed at 120-degree and 135-degree build orientation, respectively, whereas group C specimens were milled using a CAD-CAM technology. The surface roughness was assessed using a noncontact profilometer with a 0.01 mm resolution and the flexural strength was determined using a three-point bend test. The maximum load in Newtons (N) at fracture, the flexural stress (MPa), and strain (mm/mm) was also measured. STATISTICAL ANALYSIS: Data were analyzed by a statistical software package. One-way analysis of variance test was applied to determine whether significant differences existed among the study groups, followed by Bonferroni post-hoc test to determine which resin group significantly differed from the others in terms of flexural strength and surface roughness (p ≤ 0.05). RESULTS: The flexural stress (MPa) of group C was 200% of group A and 166% of group B. The flexural modulus was 192% of group A and 161% of group B. In contrast, group A had the lowest mean value among the three groups for all the parameters. No significant difference was seen between group A and group B. The mean roughness values of the CAD-CAM denture base resin specimens (group C) were the least (127356 nm) among all the three groups. The mean surface roughness of the 3D-printed denture base specimens (group A) was 1,34,234 nm and that of group B was (1,45,931 nm); however, it was statistically nonsignificant (p > 0.05) CONCLUSIONS: The CAD-CAM resin displayed superior surface and mechanical properties compared to the 3D-printed resin. The two different build plate angles did not have any significant effect on the surface roughness of the 3D-printed denture base resin.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Eur J Dent
Año:
2024
Tipo del documento:
Article
País de afiliación:
Arabia Saudita
Pais de publicación:
Alemania