Your browser doesn't support javascript.
loading
A Photomodulable Bacteriophage-Spike Nanozyme Enables Dually Enhanced Biofilm Penetration and Bacterial Capture for Photothermal-Boosted Catalytic Therapy of MRSA Infections.
Wu, Haibin; Wei, Min; Hu, Shen; Cheng, Pu; Shi, Shuhan; Xia, Fan; Xu, Lenan; Yin, Lina; Liang, Guang; Li, Fangyuan; Ling, Daishun.
Afiliación
  • Wu H; School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 311399, P. R. China.
  • Wei M; Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China.
  • Hu S; Department of Obstetrics and Gynaecology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, P. R. China.
  • Cheng P; Department of Obstetrics and Gynaecology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, P. R. China.
  • Shi S; School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 311399, P. R. China.
  • Xia F; Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China.
  • Xu L; School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 311399, P. R. China.
  • Yin L; School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 311399, P. R. China.
  • Liang G; School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 311399, P. R. China.
  • Li F; Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China.
  • Ling D; Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310012, P. R. China.
Adv Sci (Weinh) ; 10(24): e2301694, 2023 08.
Article en En | MEDLINE | ID: mdl-37310410
ABSTRACT
Nanozymes, featuring intrinsic biocatalytic effects and broad-spectrum antimicrobial properties, are emerging as a novel antibiotic class. However, prevailing bactericidal nanozymes face a challenging dilemma between biofilm penetration and bacterial capture capacity, significantly impeding their antibacterial efficacy. Here, this work introduces a photomodulable bactericidal nanozyme (ICG@hMnOx ), composed of a hollow virus-spiky MnOx nanozyme integrated with indocyanine green, for dually enhanced biofilm penetration and bacterial capture for photothermal-boosted catalytic therapy of bacterial infections. ICG@hMnOx demonstrates an exceptional capability to deeply penetrate biofilms, owing to its pronounced photothermal effect that disrupts the compact structure of biofilms. Simultaneously, the virus-spiky surface significantly enhances the bacterial capture capacity of ICG@hMnOx . This surface acts as a membrane-anchored generator of reactive oxygen species and a glutathione scavenger, facilitating localized photothermal-boosted catalytic bacterial disinfection. Effective treatment of methicillin-resistant Staphylococcus aureus-associated biofilm infections is achieved using ICG@hMnOx , offering an appealing strategy to overcome the longstanding trade-off between biofilm penetration and bacterial capture capacity in antibacterial nanozymes. This work presents a significant advancement in the development of nanozyme-based therapies for combating biofilm-related bacterial infections.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Infecciones Estafilocócicas / Bacteriófagos / Biopelículas / Nanopartículas / Staphylococcus aureus Resistente a Meticilina Límite: Humans Idioma: En Revista: Adv Sci (Weinh) Año: 2023 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Infecciones Estafilocócicas / Bacteriófagos / Biopelículas / Nanopartículas / Staphylococcus aureus Resistente a Meticilina Límite: Humans Idioma: En Revista: Adv Sci (Weinh) Año: 2023 Tipo del documento: Article
...