Your browser doesn't support javascript.
loading
Microscale Imaging of Thermal Conductivity Suppression at Grain Boundaries.
Isotta, Eleonora; Jiang, Shizhou; Moller, Gregory; Zevalkink, Alexandra; Snyder, G Jeffrey; Balogun, Oluwaseyi.
Afiliación
  • Isotta E; Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA.
  • Jiang S; Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA.
  • Moller G; Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, 32310, USA.
  • Zevalkink A; Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, 48824, USA.
  • Snyder GJ; Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA.
  • Balogun O; Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA.
Adv Mater ; 35(38): e2302777, 2023 Sep.
Article en En | MEDLINE | ID: mdl-37310868
Grain-boundary engineering is an effective strategy to tune the thermal conductivity of materials, leading to improved performance in thermoelectric, thermal-barrier coatings, and thermal management applications. Despite the central importance to thermal transport, a clear understanding of how grain boundaries modulate the microscale heat flow is missing, owing to the scarcity of local investigations. Here, thermal imaging of individual grain boundaries is demonstrated in thermoelectric SnTe via spatially resolved frequency-domain thermoreflectance. Measurements with microscale resolution reveal local suppressions in thermal conductivity at grain boundaries. Also, the grain-boundary thermal resistance - extracted by employing a Gibbs excess approach - is found to be correlated with the grain-boundary misorientation angle. Extracting thermal properties, including thermal boundary resistances, from microscale imaging can provide comprehensive understanding of how microstructure affects heat transport, crucially impacting the materials design of high-performance thermal-management and energy-conversion devices.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Adv Mater Asunto de la revista: BIOFISICA / QUIMICA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Adv Mater Asunto de la revista: BIOFISICA / QUIMICA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Alemania