Quantitative analysis of two COVID-19 antiviral agents, favipiravir and remdesivir, in spiked human plasma using spectrophotometric methods; greenness evaluation.
BMC Chem
; 17(1): 58, 2023 Jun 16.
Article
en En
| MEDLINE
| ID: mdl-37328879
Favipiravir and remdesivir have been included in the COVID-19 treatment guidelines panel of several countries. The main objective of the current work is to develop the first validated green spectrophotometric methods for the determination of favipiravir and remdesivir in spiked human plasma. The UV absorption spectra of favipiravir and remdesivir have shown some overlap, making simultaneous determination difficult. Due to the considerable overlap, two ratio spectra manipulating spectrophotometric methods, namely, ratio difference and the first derivative of ratio spectra, enabled the determination of favipiravir and remdesivir in their pure forms and spiked plasma. The ratio spectra of favipiravir and remdesivir were derived by dividing the spectra of each drug by the suitable spectrum of another drug as a divisor to get the ratio spectra. Favipiravir was determined by calculating the difference between 222 and 256 nm of the derived ratio spectra, while calculating the difference between 247 and 271 nm of the derived ratio spectra enabled the determination of remdesivir. Moreover, the ratio spectra of every drug were transformed to the first order derivative using ∆λ = 4 and a scaling factor of 100. The first-order derivative amplitude values at 228 and 251.20 nm enabled the determination of favipiravir and remdesivir, respectively. Regarding the pharmacokinetic profile of favipiravir (Cmax 4.43 µg/mL) and remdesivir (Cmax 3027 ng/mL), the proposed methods have been successfully applied to the spectrophotometric determination of favipiravir and remdesivir in plasma matrix. Additionally, the greenness of the described methods was evaluated using three metrics systems: the national environmental method index, the analytical eco-scale, and the analytical greenness metric. The results demonstrated that the described models were in accordance with the environmental characteristics.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Tipo de estudio:
Guideline
/
Prognostic_studies
Idioma:
En
Revista:
BMC Chem
Año:
2023
Tipo del documento:
Article
País de afiliación:
Arabia Saudita
Pais de publicación:
Suiza