Your browser doesn't support javascript.
loading
MRI radiomics-based machine learning for classification of deep-seated lipoma and atypical lipomatous tumor of the extremities.
Gitto, Salvatore; Interlenghi, Matteo; Cuocolo, Renato; Salvatore, Christian; Giannetta, Vincenzo; Badalyan, Julietta; Gallazzi, Enrico; Spinelli, Maria Silvia; Gallazzi, Mauro; Serpi, Francesca; Messina, Carmelo; Albano, Domenico; Annovazzi, Alessio; Anelli, Vincenzo; Baldi, Jacopo; Aliprandi, Alberto; Armiraglio, Elisabetta; Parafioriti, Antonina; Daolio, Primo Andrea; Luzzati, Alessandro; Biagini, Roberto; Castiglioni, Isabella; Sconfienza, Luca Maria.
Afiliación
  • Gitto S; IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.
  • Interlenghi M; Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy.
  • Cuocolo R; DeepTrace Technologies, Milan, Italy.
  • Salvatore C; Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy.
  • Giannetta V; Augmented Reality for Health Monitoring Laboratory (ARHeMLab), Department of Electrical Engineering and Information Technology, University of Naples "Federico II", Naples, Italy.
  • Badalyan J; DeepTrace Technologies, Milan, Italy.
  • Gallazzi E; Department of Science, Technology and Society, University School for Advanced Studies IUSS Pavia, Pavia, Italy.
  • Spinelli MS; Diagnostic and Interventional Radiology Department, IRCCS Ospedale San Raffaele-Turro, Università Vita-Salute San Raffaele, Milan, Italy.
  • Gallazzi M; Scuola di Specializzazione in Statistica Sanitaria e Biometria, Università Degli Studi Di Milano, Milan, Italy.
  • Serpi F; UOC Patologia Vertebrale e Scoliosi, ASST Gaetano Pini - CTO, Milan, Italy.
  • Messina C; UOC Ortopedia Oncologica, ASST Gaetano Pini - CTO, Milan, Italy.
  • Albano D; UOC Radiodiagnostica, ASST Gaetano Pini - CTO, Milan, Italy.
  • Annovazzi A; Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy.
  • Anelli V; IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.
  • Baldi J; Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy.
  • Aliprandi A; IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.
  • Armiraglio E; Nuclear Medicine Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
  • Parafioriti A; Radiology and Diagnostic Imaging Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
  • Daolio PA; Oncological Orthopaedics Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
  • Luzzati A; Istituti Clinici Zucchi, Monza, Italy.
  • Biagini R; UOC Anatomia Patologica, ASST Gaetano Pini - CTO Milan, Milan, Italy.
  • Castiglioni I; UOC Anatomia Patologica, ASST Gaetano Pini - CTO Milan, Milan, Italy.
  • Sconfienza LM; UOC Ortopedia Oncologica, ASST Gaetano Pini - CTO, Milan, Italy.
Radiol Med ; 128(8): 989-998, 2023 Aug.
Article en En | MEDLINE | ID: mdl-37335422
PURPOSE: To determine diagnostic performance of MRI radiomics-based machine learning for classification of deep-seated lipoma and atypical lipomatous tumor (ALT) of the extremities. MATERIAL AND METHODS: This retrospective study was performed at three tertiary sarcoma centers and included 150 patients with surgically treated and histology-proven lesions. The training-validation cohort consisted of 114 patients from centers 1 and 2 (n = 64 lipoma, n = 50 ALT). The external test cohort consisted of 36 patients from center 3 (n = 24 lipoma, n = 12 ALT). 3D segmentation was manually performed on T1- and T2-weighted MRI. After extraction and selection of radiomic features, three machine learning classifiers were trained and validated using nested fivefold cross-validation. The best-performing classifier according to previous analysis was evaluated and compared to an experienced musculoskeletal radiologist in the external test cohort. RESULTS: Eight features passed feature selection and were incorporated into the machine learning models. After training and validation (74% ROC-AUC), the best-performing classifier (Random Forest) showed 92% sensitivity and 33% specificity in the external test cohort with no statistical difference compared to the radiologist (p = 0.474). CONCLUSION: MRI radiomics-based machine learning may classify deep-seated lipoma and ALT of the extremities with high sensitivity and negative predictive value, thus potentially serving as a non-invasive screening tool to reduce unnecessary referral to tertiary tumor centers.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Lipoma / Liposarcoma Tipo de estudio: Observational_studies / Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Radiol Med Año: 2023 Tipo del documento: Article País de afiliación: Italia Pais de publicación: Italia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Lipoma / Liposarcoma Tipo de estudio: Observational_studies / Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Radiol Med Año: 2023 Tipo del documento: Article País de afiliación: Italia Pais de publicación: Italia