Butyrate enhances erastin-induced ferroptosis of lung cancer cells via modulating the ATF3/SLC7A11 pathway.
Environ Toxicol
; 39(2): 529-538, 2024 Feb.
Article
en En
| MEDLINE
| ID: mdl-37341073
Ferroptosis is a novel form of programmed cell death triggered by iron-dependent lipid peroxidation and has been associated with various diseases, including cancer. Erastin, an inhibitor of system Xc-, which plays a critical role in regulating ferroptosis, has been identified as an inducer of ferroptosis in cancer cells. In this study, we investigated the impact of butyrate, a short-chain fatty acid produced by gut microbiota, on erastin-induced ferroptosis in lung cancer cells. Our results demonstrated that butyrate significantly enhanced erastin-induced ferroptosis in lung cancer cells, as evidenced by increased lipid peroxidation and reduced expression of glutathione peroxidase 4 (GPX4). Mechanistically, we found that butyrate modulated the pathway involving activating transcription factor 3 (ATF3) and solute carrier family 7 member 11 (SLC7A11), leading to enhanced erastin-induced ferroptosis. Furthermore, partial reversal of the effect of butyrate on ferroptosis was observed upon knockdown of ATF3 or SLC7A11. Collectively, our findings indicate that butyrate enhances erastin-induced ferroptosis in lung cancer cells by modulating the ATF3/SLC7A11 pathway, suggesting its potential as a therapeutic agent for cancer treatment.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Ferroptosis
/
Neoplasias Pulmonares
Tipo de estudio:
Prognostic_studies
Límite:
Humans
Idioma:
En
Revista:
Environ Toxicol
Asunto de la revista:
SAUDE AMBIENTAL
/
TOXICOLOGIA
Año:
2024
Tipo del documento:
Article
País de afiliación:
China
Pais de publicación:
Estados Unidos