Your browser doesn't support javascript.
loading
DKADE: a novel framework based on deep learning and knowledge graph for identifying adverse drug events and related medications.
Feng, Ze-Ying; Wu, Xue-Hong; Ma, Jun-Long; Li, Min; He, Ge-Fei; Cao, Dong-Sheng; Yang, Guo-Ping.
Afiliación
  • Feng ZY; Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha 410083, China.
  • Wu XH; XiangYa School of Pharmaceutical Sciences, Central South University, Changsha 410083, China.
  • Ma JL; School of Computer Science and Engineering, Central South University, Changsha 410083, China.
  • Li M; Hunan Key Health Technology Co., LTD, Changsha 410083, China.
  • He GF; Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha 410083, China.
  • Cao DS; School of Computer Science and Engineering, Central South University, Changsha 410083, China.
  • Yang GP; Department of Pharmacy, The First Hospital of Changsha, Changsha 410083, China.
Brief Bioinform ; 24(4)2023 07 20.
Article en En | MEDLINE | ID: mdl-37344167
Adverse drug events (ADEs) are common in clinical practice and can cause significant harm to patients and increase resource use. Natural language processing (NLP) has been applied to automate ADE detection, but NLP systems become less adaptable when drug entities are missing or multiple medications are specified in clinical narratives. Additionally, no Chinese-language NLP system has been developed for ADE detection due to the complexity of Chinese semantics, despite ˃10 million cases of drug-related adverse events occurring annually in China. To address these challenges, we propose DKADE, a deep learning and knowledge graph-based framework for identifying ADEs. DKADE infers missing drug entities and evaluates their correlations with ADEs by combining medication orders and existing drug knowledge. Moreover, DKADE can automatically screen for new adverse drug reactions. Experimental results show that DKADE achieves an overall F1-score value of 91.13%. Furthermore, the adaptability of DKADE is validated using real-world external clinical data. In summary, DKADE is a powerful tool for studying drug safety and automating adverse event monitoring.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos / Aprendizaje Profundo Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Brief Bioinform Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2023 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos / Aprendizaje Profundo Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Brief Bioinform Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2023 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido