Your browser doesn't support javascript.
loading
Impact of ultrafine particles and total particle number concentration on five cause-specific hospital admission endpoints in three German cities.
Schwarz, Maximilian; Schneider, Alexandra; Cyrys, Josef; Bastian, Susanne; Breitner, Susanne; Peters, Annette.
Afiliación
  • Schwarz M; Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany; Institute for Medical Information Processing, Biometry and Epidemiology, Medical Faculty, Ludwig-Maximilians-Universität München, Munich, Germany. Electronic address: m
  • Schneider A; Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany.
  • Cyrys J; Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany.
  • Bastian S; Saxon State Office for Environment, Agriculture and Geology (LfULG), Dresden, Germany.
  • Breitner S; Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany; Institute for Medical Information Processing, Biometry and Epidemiology, Medical Faculty, Ludwig-Maximilians-Universität München, Munich, Germany.
  • Peters A; Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany; Institute for Medical Information Processing, Biometry and Epidemiology, Medical Faculty, Ludwig-Maximilians-Universität München, Munich, Germany; Department of Environ
Environ Int ; 178: 108032, 2023 08.
Article en En | MEDLINE | ID: mdl-37352580
ABSTRACT

INTRODUCTION:

Numerous studies have shown associations between daily concentrations of fine particles (e.g., particulate matter with an aerodynamic diameter ≤2.5 µm; PM2.5) and morbidity. However, evidence for ultrafine particles (UFP; particles with an aerodynamic diameter of 10-100 nm) remains conflicting. Therefore, we aimed to examine the short-term associations of UFP with five cause-specific hospital admission endpoints for Leipzig, Dresden, and Augsburg, Germany. MATERIAL AND

METHODS:

We obtained daily counts of (cause-specific) cardiorespiratory hospital admissions between 2010 and 2017. Daily average concentrations of UFP, total particle number (PNC; 10-800 nm), and black carbon (BC) were measured at six sites; PM2.5 and nitrogen dioxide (NO2) were obtained from monitoring networks. We assessed immediate (lag 0-1), delayed (lag 2-4, lag 5-7), and cumulative (lag 0-7) effects by applying station-specific confounder-adjusted Poisson regression models. We then used a novel multi-level meta-analytical method to obtain pooled risk estimates. Finally, we performed two-pollutant models to investigate interdependencies between pollutants and examined possible effect modification by age, sex, and season.

RESULTS:

UFP showed a delayed (lag 2-4) increase in respiratory hospital admissions of 0.69% [95% confidence interval (CI) -0.28%; 1.67%]. For other hospital admission endpoints, we found only suggestive results. Larger particle size fractions, such as accumulation mode particles (particles with an aerodynamic diameter of 100-800 nm), generally showed stronger effects (respiratory hospital admissions & lag 2-4 1.55% [95% CI 0.86%; 2.25%]). PM2.5 showed the most consistent associations for (cardio-)respiratory hospital admissions, whereas NO2 did not show any associations. Two-pollutant models showed independent effects of PM2.5 and BC. Moreover, higher risks have been observed for children.

CONCLUSIONS:

We observed clear associations with PM2.5 but UFP or PNC did not show a clear association across different exposure windows and cause-specific hospital admissions. Further multi-center studies are needed using harmonized UFP measurements to draw definite conclusions on the health effects of UFP.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Contaminantes Atmosféricos / Contaminación del Aire / Contaminantes Ambientales Tipo de estudio: Clinical_trials Límite: Child / Humans Idioma: En Revista: Environ Int Año: 2023 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Contaminantes Atmosféricos / Contaminación del Aire / Contaminantes Ambientales Tipo de estudio: Clinical_trials Límite: Child / Humans Idioma: En Revista: Environ Int Año: 2023 Tipo del documento: Article