Your browser doesn't support javascript.
loading
Vanadium mobilization and redistribution during mineral transformation of vanadium-titanium magnetite tailings with different weathering degrees.
Gan, Chun-Dan; Yang, Jin-Yan; Du, Xin-Yue; Li, Jia-Li; Tang, Qi-Xuan; Nikitin, Aleksander.
Afiliación
  • Gan CD; College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin 644000, China.
  • Yang JY; College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin 644000, China. Electronic address: yanyang@scu.edu.cn.
  • Du XY; College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin 644000, China.
  • Li JL; College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin 644000, China.
  • Tang QX; College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
  • Nikitin A; Institute of Radiobiology of the National Academy of Sciences of Belarus, Fedjuninskogo str., 4, 246007 Gomel, Belarus.
Sci Total Environ ; 894: 165068, 2023 Oct 10.
Article en En | MEDLINE | ID: mdl-37355119
ABSTRACT
Due to the long-term open stockpile, the release of vanadium (V) from V-containing tailings will cause continuous V pollution in the mining area. Previous studies on the concentration and speciation of V primarily focused on surface tailings at a regional scale. However, the mobilization and redistribution of V within the tailing profile during the mineral transformation of tailings remain unclear. Herein, a series of concentrations of V(V) (0-200 mg L-1) solutions were added to the vanadium­titanium magnetite tailings at different depths separately to simulate the redistribution of dissolved V released from tailings in the solid phase of tailings. During the 56-day incubation, the concentrations of aqueous V in the surface tailings were significantly lower than those in the deep tailings under the same level of V(V) treatment, indicating that the shallow tailings had a stronger immobilization capacity for V than the deep tailings. Morphological analysis and color overlays of the elements demonstrated that most of V was immobilized into the tailings and adsorbed or precipitated by the Fe (hydr)oxides in the tailings in 200 mg L-1 V(V) treatment. This portion of V mainly occurred in acid-soluble and reducible fractions in the tailings after a 7-day incubation, accounting for >71.7 % of the total V. However, these two factions of V with high bioavailability were gradually mineralized over time and transferred to residual V, which is difficult to move and has low bioavailability. Mineral phase analysis revealed that additional V(V) favored the formation of melanovanadite (Ca2V8O20·10H2O) and chromium vanadium oxide (Cr2V4O13) in the tailings. This study reveals that the dissolved V influenced the fractionation and redistribution of solid-phase V during tailing weathering, improving the understanding of the geochemical processes of V in tailing profiles and providing important guidance for the management of V-containing tailings.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Guideline Idioma: En Revista: Sci Total Environ Año: 2023 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Guideline Idioma: En Revista: Sci Total Environ Año: 2023 Tipo del documento: Article País de afiliación: China