Your browser doesn't support javascript.
loading
D-α-tocopherol polyethylene glycol 1000 succinate-based microemulsion delivery system: Stability enhancement of physicochemical properties of luteolin.
Zheng, Yimei; Zhao, Chengang; Chen, Boyu; Teng, Hui; Ai, Chao; Chen, Lei.
Afiliación
  • Zheng Y; College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Labo
  • Zhao C; College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Labo
  • Chen B; College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Labo
  • Teng H; College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Labo
  • Ai C; College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Labo
  • Chen L; College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Labo
Food Chem ; 426: 136587, 2023 Nov 15.
Article en En | MEDLINE | ID: mdl-37364422
In the present study, D-α-Tocopherol polyethylene glycol 1000 succinate-based self-microemulsifying drug delivery systems (TPGS-SMEDDS) were introduced to enhance the solubility and stability of luteolin. The ternary phase diagrams were constructed to obtain the maximum area of microemulsion and suitable formulations of TPGS-SMEDDS. The particle size distribution and polydispersity index of selected TPGS-SMEDDS were analyzed to be less than 100 nm and 0.4, respectively. The thermodynamic stability results suggested that the TPGS-SMEDDS was stable during the heat-cool and freeze-thaw cycle. Moreover, the TPGS-SMEDDS exhibited excellent encapsulation capacity (51.21 ± 4.39 to 85.71 ± 2.40%) and loading efficiency (61.46 ± 5.27 to 102.86 ± 2.88 mg/g) to luteolin. In addition, the TPGS-SMEDDS showed an admirable vitro release ability with a ratio of more than 88.40 ± 1.14% for luteolin in 24 h. Therefore, TPGS-based SMEDDS might provide an effective role for the oral administration of luteolin and holds promise as a potential delivery for poorly soluble bioactive compounds.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Alfa-Tocoferol / Luteolina Idioma: En Revista: Food Chem Año: 2023 Tipo del documento: Article Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Alfa-Tocoferol / Luteolina Idioma: En Revista: Food Chem Año: 2023 Tipo del documento: Article Pais de publicación: Reino Unido