Your browser doesn't support javascript.
loading
Remodeled eX vivo muscle engineered tissue improves heart function after chronic myocardial ischemia.
Cosentino, Marianna; Nicoletti, Carmine; Valenti, Valentina; Schirone, Leonardo; Di Nonno, Flavio; Apa, Ludovica; Zouhair, Mariam; Genovese, Desiree; Madaro, Luca; Dinarelli, Simone; Rossi, Marco; Del Prete, Zaccaria; Sciarretta, Sebastiano; Frati, Giacomo; Rizzuto, Emanuele; Musarò, Antonio.
Afiliación
  • Cosentino M; Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 14, 00161, Rome, Italy.
  • Nicoletti C; Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 14, 00161, Rome, Italy.
  • Valenti V; Department of Cardiology, Ospedale Santa Maria Goretti, 04100, Latina, Italy.
  • Schirone L; Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy.
  • Di Nonno F; Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy.
  • Apa L; IRCCS Neuromed, Pozzilli (IS), Italy.
  • Zouhair M; Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, 00184, Rome, Italy.
  • Genovese D; Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 14, 00161, Rome, Italy.
  • Madaro L; Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 14, 00161, Rome, Italy.
  • Dinarelli S; Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy.
  • Rossi M; Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, 00161, Rome, Italy.
  • Del Prete Z; Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, 00161, Rome, Italy.
  • Sciarretta S; Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, 00184, Rome, Italy.
  • Frati G; Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy.
  • Rizzuto E; IRCCS Neuromed, Pozzilli (IS), Italy.
  • Musarò A; Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy.
Sci Rep ; 13(1): 10370, 2023 06 26.
Article en En | MEDLINE | ID: mdl-37365262
ABSTRACT
The adult heart displays poor reparative capacities after injury. Cell transplantation and tissue engineering approaches have emerged as possible therapeutic options. Several stem cell populations have been largely used to treat the infarcted myocardium. Nevertheless, transplanted cells displayed limited ability to establish functional connections with the host cardiomyocytes. In this study, we provide a new experimental tool, named 3D eX vivo muscle engineered tissue (X-MET), to define the contribution of mechanical stimuli in triggering functional remodeling and to rescue cardiac ischemia. We revealed that mechanical stimuli trigger a functional remodeling of the 3D skeletal muscle system toward a cardiac muscle-like structure. This was supported by molecular and functional analyses, demonstrating that remodeled X-MET expresses relevant markers of functional cardiomyocytes, compared to unstimulated and to 2D- skeletal muscle culture system. Interestingly, transplanted remodeled X-MET preserved heart function in a murine model of chronic myocardial ischemia and increased survival of transplanted injured mice. X-MET implantation resulted in repression of pro-inflammatory cytokines, induction of anti-inflammatory cytokines, and reduction in collagen deposition. Altogether, our findings indicate that biomechanical stimulation induced a cardiac functional remodeling of X-MET, which showed promising seminal results as a therapeutic product for the development of novel strategies for regenerative medicine.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Isquemia Miocárdica Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Sci Rep Año: 2023 Tipo del documento: Article País de afiliación: Italia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Isquemia Miocárdica Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Sci Rep Año: 2023 Tipo del documento: Article País de afiliación: Italia