Your browser doesn't support javascript.
loading
Assessment of the TRX2p-yEGFP Biosensor to Monitor the Redox Response of an Industrial Xylose-Fermenting Saccharomyces cerevisiae Strain during Propagation and Fermentation.
Perruca Foncillas, Raquel; Sanchis Sebastiá, Miguel; Wallberg, Ola; Carlquist, Magnus; Gorwa-Grauslund, Marie F.
Afiliación
  • Perruca Foncillas R; Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.
  • Sanchis Sebastiá M; Department of Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.
  • Wallberg O; Department of Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.
  • Carlquist M; Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.
  • Gorwa-Grauslund MF; Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.
J Fungi (Basel) ; 9(6)2023 May 30.
Article en En | MEDLINE | ID: mdl-37367566
The commercial production of bioethanol from lignocellulosic biomass such as wheat straw requires utilizing a microorganism that can withstand all the stressors encountered in the process while fermenting all the sugars in the biomass. Therefore, it is essential to develop tools for monitoring and controlling the cellular fitness during both cell propagation and sugar fermentation to ethanol. In the present study, on-line flow cytometry was adopted to assess the response of the biosensor TRX2p-yEGFP for redox imbalance in an industrial xylose-fermenting strain of Saccharomyces cerevisiae during cell propagation and the following fermentation of wheat-straw hydrolysate. Rapid and transient induction of the sensor was recorded upon exposure to furfural and wheat straw hydrolysate containing up to 3.8 g/L furfural. During the fermentation step, the induction rate of the sensor was also found to correlate to the initial ethanol production rate, highlighting the relevance of redox monitoring and the potential of the presented tool to assess the ethanol production rate in hydrolysates. Three different propagation strategies were also compared, and it was confirmed that pre-exposure to hydrolysate during propagation remains the most efficient method for high ethanol productivity in the following wheat-straw hydrolysate fermentations.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Fungi (Basel) Año: 2023 Tipo del documento: Article País de afiliación: Suecia Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Fungi (Basel) Año: 2023 Tipo del documento: Article País de afiliación: Suecia Pais de publicación: Suiza