Your browser doesn't support javascript.
loading
Variation in bridgmanite grain size accounts for the mid-mantle viscosity jump.
Fei, Hongzhan; Ballmer, Maxim D; Faul, Ulrich; Walte, Nicolas; Cao, Weiwei; Katsura, Tomoo.
Afiliación
  • Fei H; Bayerisches Geoinstitut, Universität Bayreuth, Bayreuth, Germany. feihongzhan@zju.edu.cn.
  • Ballmer MD; Key Laboratory of Geoscience Big Data and Deep Resource of Zhejiang Province, School of Earth Sciences, Zhejiang University, Hangzhou, China. feihongzhan@zju.edu.cn.
  • Faul U; Department of Earth Sciences, University College London, London, UK.
  • Walte N; Earth Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
  • Cao W; Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Garching, Germany.
  • Katsura T; Conditions Extrêmes et Matériaux: Haute Température et Irradiation (CEMHTI), Orléans, France.
Nature ; 620(7975): 794-799, 2023 Aug.
Article en En | MEDLINE | ID: mdl-37407826
A viscosity jump of one to two orders of magnitude in the lower mantle of Earth at 800-1,200-km depth is inferred from geoid inversions and slab-subducting speeds. This jump is known as the mid-mantle viscosity jump1,2. The mid-mantle viscosity jump is a key component of lower-mantle dynamics and evolution because it decelerates slab subduction3, accelerates plume ascent4 and inhibits chemical mixing5. However, because phase transitions of the main lower-mantle minerals do not occur at this depth, the origin of the viscosity jump remains unknown. Here we show that bridgmanite-enriched rocks in the deep lower mantle have a grain size that is more than one order of magnitude larger and a viscosity that is at least one order of magnitude higher than those of the overlying pyrolitic rocks. This contrast is sufficient to explain the mid-mantle viscosity jump1,2. The rapid growth in bridgmanite-enriched rocks at the early stage of the history of Earth and the resulting high viscosity account for their preservation against mantle convection5-7. The high Mg:Si ratio of the upper mantle relative to chondrites8, the anomalous 142Nd:144Nd, 182W:184W and 3He:4He isotopic ratios in hot-spot magmas9,10, the plume deflection4 and slab stagnation in the mid-mantle3 as well as the sparse observations of seismic anisotropy11,12 can be explained by the long-term preservation of bridgmanite-enriched rocks in the deep lower mantle as promoted by their fast grain growth.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nature Año: 2023 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nature Año: 2023 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Reino Unido