Your browser doesn't support javascript.
loading
Tutorial on causal mediation analysis with binary variables: An application to health psychology research.
Xu, Shu; Coffman, Donna L; Luta, George; Niaura, Raymond S.
Afiliación
  • Xu S; Department of Biostatistics, New York University.
  • Coffman DL; Department of Psychology, University of South Carolina.
  • Luta G; Department of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University.
  • Niaura RS; Department of Social Behavioral Science, New York University.
Health Psychol ; 42(11): 778-787, 2023 Nov.
Article en En | MEDLINE | ID: mdl-37410423
Mediation analysis has been widely applied to explain why and assess the extent to which an exposure or treatment has an impact on the outcome in health psychology studies. Identifying a mediator or assessing the impact of a mediator has been the focus of many scientific investigations. This tutorial aims to introduce causal mediation analysis with binary exposure, mediator, and outcome variables, with a focus on the resampling and weighting methods, under the potential outcomes framework for estimating natural direct and indirect effects. We emphasize the importance of the temporal order of the study variables and the elimination of confounding. We define the causal effects in a hypothesized causal mediation chain in the context of one exposure, one mediator, and one outcome variable, all of which are binary variables. Two commonly used and actively maintained R packages, mediation and medflex, were used to analyze a motivating example. R code examples for implementing these methods are provided. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Medicina de la Conducta / Modelos Estadísticos Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Health Psychol Año: 2023 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Medicina de la Conducta / Modelos Estadísticos Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Health Psychol Año: 2023 Tipo del documento: Article Pais de publicación: Estados Unidos