Your browser doesn't support javascript.
loading
Light-driven Transformation of Carbon Monoxide into Hydrocarbons using CdS@ZnS : VFe Protein Biohybrids.
Ding, Yuchen; Lee, Chi Chung; Hu, Yilin; Ribbe, Markus M; Nagpal, Prashant; Chatterjee, Anushree.
Afiliación
  • Ding Y; Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA.
  • Lee CC; Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697-3900, USA.
  • Hu Y; Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697-3900, USA.
  • Ribbe MM; Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697-3900, USA.
  • Nagpal P; Department of Chemistry, University of California, Irvine, USA.
  • Chatterjee A; Sachi Bio, Louisville, CO 80027, USA.
ChemSusChem ; 16(20): e202300981, 2023 Oct 20.
Article en En | MEDLINE | ID: mdl-37419863
Enzymatic Fisher-Tropsch (FT) process catalyzed by vanadium (V)-nitrogenase can convert carbon monoxide (CO) to longer-chain hydrocarbons (>C2) under ambient conditions, although this process requires high-cost reducing agent(s) and/or the ATP-dependent reductase as electron and energy sources. Using visible light-activated CdS@ZnS (CZS) core-shell quantum dots (QDs) as alternative reducing equivalent for the catalytic component (VFe protein) of V-nitrogenase, we first report a CZS : VFe biohybrid system that enables effective photo-enzymatic C-C coupling reactions, hydrogenating CO into hydrocarbon fuels (up to C4) that can be hardly achieved with conventional inorganic photocatalysts. Surface ligand engineering optimizes molecular and opto-electronic coupling between QDs and the VFe protein, realizing high efficiency (internal quantum yield >56 %), ATP-independent, photon-to-fuel production, achieving an electron turnover number of >900, that is 72 % compared to the natural ATP-coupled transformation of CO into hydrocarbons by V-nitrogenase. The selectivity of products can be controlled by irradiation conditions, with higher photon flux favoring (longer-chain) hydrocarbon generation. The CZS : VFe biohybrids not only can find applications in industrial CO removal for high-value-added chemical production by using the cheap, renewable solar energy, but also will inspire related research interests in understanding the molecular and electronic processes in photo-biocatalytic systems.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Monóxido de Carbono / Nitrogenasa Idioma: En Revista: ChemSusChem Asunto de la revista: QUIMICA / TOXICOLOGIA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Monóxido de Carbono / Nitrogenasa Idioma: En Revista: ChemSusChem Asunto de la revista: QUIMICA / TOXICOLOGIA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Alemania