Your browser doesn't support javascript.
loading
Evaluating differences between formulated dietary net energy values and net energy values determined from growth performance in finishing beef steers.
Galyean, Michael L; Hales, Kristin E; Smith, Zachary K.
Afiliación
  • Galyean ML; Department of Veterinary Science, Texas Tech University, Lubbock 79409, USA.
  • Hales KE; Department of Animal and Food Sciences, Texas Tech University, Lubbock 79409, USA.
  • Smith ZK; Department of Animal Science, South Dakota State University, Brookings 57007, USA.
J Anim Sci ; 1012023 Jan 03.
Article en En | MEDLINE | ID: mdl-37422728
Feedlot growth performance and carcass data can be used to estimate dietary net energy values. The degree to which growth performance-predicted values agree with tabular energy values for feeds is an indication of how accurately the California Net Energy System can be used to predict cattle growth performance. Using data from 747 pens of cattle in feedlot research studies, we found that growth performance-predicted and tabular net energy values agreed on average, but the precision of growth performance-predicted estimates was less than desired for practical application. Based on analysis of residuals, differences in gain:feed ratio were strongly related to growth performance-predicted net energy values. Research is needed on approaches to improve the precision of growth performance-predicted net energy values.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Aumento de Peso / Dieta Tipo de estudio: Prognostic_studies Límite: Animals País/Región como asunto: America do norte Idioma: En Revista: J Anim Sci Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Aumento de Peso / Dieta Tipo de estudio: Prognostic_studies Límite: Animals País/Región como asunto: America do norte Idioma: En Revista: J Anim Sci Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos