Your browser doesn't support javascript.
loading
Determining structures of individual RNA conformers using atomic force microscopy images and deep neural networks.
Degenhardt, Maximilia F S; Degenhardt, Hermann F; Bhandari, Yuba R; Lee, Yun-Tzai; Ding, Jienyu; Heinz, William F; Stagno, Jason R; Schwieters, Charles D; Zhang, Jinwei; Wang, Yun-Xing.
Afiliación
  • Degenhardt MFS; Protein-Nucleic Acid Interaction Section, Center for Structural Biology, National Cancer Institute; Frederick, USA.
  • Degenhardt HF; Protein-Nucleic Acid Interaction Section, Center for Structural Biology, National Cancer Institute; Frederick, USA.
  • Bhandari YR; Protein-Nucleic Acid Interaction Section, Center for Structural Biology, National Cancer Institute; Frederick, USA.
  • Lee YT; Protein-Nucleic Acid Interaction Section, Center for Structural Biology, National Cancer Institute; Frederick, USA.
  • Ding J; Protein-Nucleic Acid Interaction Section, Center for Structural Biology, National Cancer Institute; Frederick, USA.
  • Heinz WF; Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
  • Stagno JR; Protein-Nucleic Acid Interaction Section, Center for Structural Biology, National Cancer Institute; Frederick, USA.
  • Schwieters CD; Computational Biomolecular Magnetic Resonance Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health; Bethesda, USA.
  • Zhang J; Structural Biology of Noncoding RNAs and Ribonucleoproteins Section, Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health; Bethesda, USA.
  • Wang YX; Protein-Nucleic Acid Interaction Section, Center for Structural Biology, National Cancer Institute; Frederick, USA.
Res Sq ; 2023 Jun 07.
Article en En | MEDLINE | ID: mdl-37425706
ABSTRACT
The vast percentage of the human genome is transcribed into RNA, many of which contain various structural elements and are important for functions. RNA molecules are conformationally heterogeneous and functionally dyanmics1, even when they are structured and well-folded2, which limit the applicability of methods such as NMR, crystallography, or cryo-EM. Moreover, because of the lack of a large structure RNA database, and no clear correlation between sequence and structure, approaches like AlphaFold3 for protein structure prediction, do not apply to RNA. Therefore determining the structures of heterogeneous RNA is an unmet challenge. Here we report a novel method of determining RNA three-dimensional topological structures using deep neural networks and atomic force microscopy (AFM) images of individual RNA molecules in solution. Owing to the high signal-to-noise ratio of AFM, our method is ideal for capturing structures of individual conformationally heterogeneous RNA. We show that our method can determine 3D topological structures of any large folded RNA conformers, from ~ 200 to ~ 420 residues, the size range that most functional RNA structures or structural elements fall into. Thus our method addresses one of the major challenges in frontier RNA structural biology and may impact our fundamental understanding of RNA structure.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Res Sq Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: EEUU / ESTADOS UNIDOS / ESTADOS UNIDOS DA AMERICA / EUA / UNITED STATES / UNITED STATES OF AMERICA / US / USA

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Res Sq Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: EEUU / ESTADOS UNIDOS / ESTADOS UNIDOS DA AMERICA / EUA / UNITED STATES / UNITED STATES OF AMERICA / US / USA