Your browser doesn't support javascript.
loading
3D spheroid-microvasculature-on-a-chip for tumor-endothelium mechanobiology interplay.
Zhang, Yingqi; Jiang, Fengtao; Zhao, Yunduo Charles; Cho, Ann-Na; Fang, Guocheng; Cox, Charles D; Zreiqat, Hala; Lu, Zu Fu; Lu, Hongxu; Ju, Lining Arnold.
Afiliación
  • Zhang Y; School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Darlington, NSW 2008, Australia.
  • Jiang F; Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia.
  • Zhao YC; Sydney Nano Institute, The University of Sydney, Camperdown, NSW 2006, Australia.
  • Cho AN; School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Darlington, NSW 2008, Australia.
  • Fang G; Sydney Nano Institute, The University of Sydney, Camperdown, NSW 2006, Australia.
  • Cox CD; State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, People's Republic of China.
  • Zreiqat H; School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Darlington, NSW 2008, Australia.
  • Lu ZF; Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia.
  • Lu H; Sydney Nano Institute, The University of Sydney, Camperdown, NSW 2006, Australia.
  • Ju LA; Dementia Research Centre, Department of Biomedical Sciences, Faculty of Medicine Health and Human Sciences, Macquarie University, Sydney, Australia.
Biomed Mater ; 18(5)2023 07 27.
Article en En | MEDLINE | ID: mdl-37451254
ABSTRACT
During the final stage of cancer metastasis, tumor cells embed themselves in distant capillary beds, from where they extravasate and establish secondary tumors. Recent findings underscore the pivotal roles of blood/lymphatic flow and shear stress in this intricate tumor extravasation process. Despite the increasing evidence, there is a dearth of systematic and biomechanical methodologies that accurately mimic intricate 3D microtissue interactions within a controlled hydrodynamic microenvironment. Addressing this gap, we introduce an easy-to-operate 3D spheroid-microvasculature-on-a-chip (SMAC) model. Operating under both static and regulated flow conditions, the SMAC model facilitates the replication of the biomechanical interplay between heterogeneous tumor spheroids and endothelium in a quantitative manner. Serving as anin vitromodel for metastasis mechanobiology, our model unveils the phenomena of 3D spheroid-induced endothelial compression and cell-cell junction degradation during tumor migration and expansion. Furthermore, we investigated the influence of shear stress on endothelial orientation, polarization, and tumor spheroid expansion. Collectively, our SMAC model provides a compact, cost-efficient, and adaptable platform for probing the mechanobiology of metastasis.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Esferoides Celulares / Neoplasias Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Biomed Mater Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2023 Tipo del documento: Article País de afiliación: Australia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Esferoides Celulares / Neoplasias Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Biomed Mater Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2023 Tipo del documento: Article País de afiliación: Australia