Quantum targeted energy transfer through machine learning tools.
Phys Rev E
; 107(6-2): 065301, 2023 Jun.
Article
en En
| MEDLINE
| ID: mdl-37464680
In quantum targeted energy transfer, bosons are transferred from a certain crystal site to an alternative one, utilizing a nonlinear resonance configuration similar to the classical targeted energy transfer. We use a computational method based on machine learning algorithms in order to investigate selectivity as well as efficiency of the quantum transfer in the context of a dimer and a trimer system. We find that our method identifies resonant quantum transfer paths that allow boson transfer in unison. The method is readily extensible to larger lattice systems involving nonlinear resonances.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Phys Rev E
Año:
2023
Tipo del documento:
Article
País de afiliación:
Grecia
Pais de publicación:
Estados Unidos