Your browser doesn't support javascript.
loading
Quantum targeted energy transfer through machine learning tools.
Andronis, I; Arapantonis, G; Barmparis, G D; Tsironis, G P.
Afiliación
  • Andronis I; Department of Physics, University of Crete, Heraklion 70013, Greece.
  • Arapantonis G; Department of Physics, University of Crete, Heraklion 70013, Greece.
  • Barmparis GD; William H. Miller III Department of Physics & Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA.
  • Tsironis GP; Department of Physics, University of Crete, Heraklion 70013, Greece.
Phys Rev E ; 107(6-2): 065301, 2023 Jun.
Article en En | MEDLINE | ID: mdl-37464680
In quantum targeted energy transfer, bosons are transferred from a certain crystal site to an alternative one, utilizing a nonlinear resonance configuration similar to the classical targeted energy transfer. We use a computational method based on machine learning algorithms in order to investigate selectivity as well as efficiency of the quantum transfer in the context of a dimer and a trimer system. We find that our method identifies resonant quantum transfer paths that allow boson transfer in unison. The method is readily extensible to larger lattice systems involving nonlinear resonances.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Phys Rev E Año: 2023 Tipo del documento: Article País de afiliación: Grecia Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Phys Rev E Año: 2023 Tipo del documento: Article País de afiliación: Grecia Pais de publicación: Estados Unidos