Plasmonic Cavity for Self-Powered Chemical Detection and Performance Boosted Surface-Enhanced Raman Scattering Detection.
ACS Appl Mater Interfaces
; 15(30): 35939-35949, 2023 Aug 02.
Article
en En
| MEDLINE
| ID: mdl-37465919
With the popularization of the Internet of Things, the application of chemical sensors has become more and more extensive. However, it is difficult for a single functional sensor to meet multiple needs at the same time. For the next generation of chemical sensors, in addition to rapid qualitative and quantitative detection, it is also necessary to solve the problem of a distributed sensor power supply. Triboelectric nanogenerator (TENG) and surface-enhanced Raman scattering (SERS) are two emerging technologies that can be used for chemical testing. The combination of TENG and SERS technology is proposed to be an attractive research strategy to implement qualitative and quantitative analysis, as well as self-powered detection in one device. Herein, the Ag nanoparticle (NP)@polydimethylsiloxane (PDMS) plasmonic cavity is demonstrated, which can be exploited not only as a SERS substrate for qualitative analysis of the target molecules but also as a TENG based self-powered chemical sensor for rapid quantitative analysis. More importantly, the as-designed plasmonic cavity enables prolonged triboelectric field generated by the phenomena of triboelectricity, which in turn enhances the "hot spot" intensities from Ag NPs in the cavity and boosts the SERS signals. In this way, the device can have good feasibility and versatility for chemical detection. Specifically, the measurement of the concentration of many analytes can be successfully realized, including ions and small molecules. The results verify that the proposed sensor system has the potential for self-powered chemical sensors for environmental monitoring and analytical chemistry.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Tipo de estudio:
Diagnostic_studies
/
Qualitative_research
Idioma:
En
Revista:
ACS Appl Mater Interfaces
Asunto de la revista:
BIOTECNOLOGIA
/
ENGENHARIA BIOMEDICA
Año:
2023
Tipo del documento:
Article
País de afiliación:
China
Pais de publicación:
Estados Unidos