Your browser doesn't support javascript.
loading
A general framework for the inclusion of time-varying and time-invariant covariates in latent state-trait models.
Oeltjen, Lara; Koch, Tobias; Holtmann, Jana; Münch, Fabian F; Eid, Michael; Nussbeck, Fridtjof W.
Afiliación
  • Oeltjen L; Department of Psychology, Friedrich-Schiller-Universitat Jena.
  • Koch T; Department of Psychology, Friedrich-Schiller-Universitat Jena.
  • Holtmann J; Wilhelm Wundt Institute for Psychology, Leipzig University.
  • Münch FF; Department of Psychology, Friedrich-Schiller-Universitat Jena.
  • Eid M; Department of Education and Psychology, Freie Universitat Berlin.
  • Nussbeck FW; Department of Psychology, Universitat Konstanz.
Psychol Methods ; 28(5): 1005-1028, 2023 Oct.
Article en En | MEDLINE | ID: mdl-37471017
Latent state-trait (LST) models are increasingly applied in psychology. Although existing LST models offer many possibilities for analyzing variability and change, they do not allow researchers to relate time-varying or time-invariant covariates, or a combination of both, to loading, intercept, and factor variance parameters in LST models. We present a general framework for the inclusion of nominal and/or continuous time-varying and time-invariant covariates in LST models. The new framework builds on modern LST theory and Bayesian moderated nonlinear factor analysis and is termed moderated nonlinear LST (MN-LST) framework. The MN-LST framework offers new modeling possibilities and allows for a fine-grained analysis of trait change, person-by-situation interaction effects, as well as inter- or intraindividual variability. The new MN-LST approach is compared to alternative modeling strategies. The advantages of the MN-LST approach are illustrated in an empirical application examining dyadic coping in romantic relationships. Finally, the advantages and limitations of the approach are discussed, and practical recommendations are provided. (PsycInfo Database Record (c) 2023 APA, all rights reserved).

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Guideline / Prognostic_studies Idioma: En Revista: Psychol Methods Asunto de la revista: PSICOLOGIA Año: 2023 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Guideline / Prognostic_studies Idioma: En Revista: Psychol Methods Asunto de la revista: PSICOLOGIA Año: 2023 Tipo del documento: Article Pais de publicación: Estados Unidos