Your browser doesn't support javascript.
loading
High-quality and high-diversity conditionally generative ghost imaging based on denoising diffusion probabilistic model.
Opt Express ; 31(15): 25104-25116, 2023 Jul 17.
Article en En | MEDLINE | ID: mdl-37475323
Deep-learning (DL) methods have gained significant attention in ghost imaging (GI) as promising approaches to attain high-quality reconstructions with limited sampling rates. However, existing DL-based GI methods primarily emphasize pixel-level loss and one-to-one mapping from bucket signals or low-quality GI images to high-quality images, tending to overlook the diversity in image reconstruction. Interpreting image reconstruction from the perspective of conditional probability, we propose the utilization of the denoising diffusion probabilistic model (DDPM) framework to address this challenge. Our designed method, known as DDPMGI, can not only achieve better quality but also generate reconstruction results with high diversity. At a sampling rate of 10%, our method achieves an average PSNR of 21.19 dB and an SSIM of 0.64, surpassing the performance of other comparison methods. The results of physical experiments further validate the effectiveness of our approach in real-world scenarios. Furthermore, we explore the potential application of our method in color GI reconstruction, where the average PSNR and SSIM reach 20.055 dB and 0.723, respectively. These results highlight the significant advancements and potential of our method in achieving high-quality image reconstructions in GI, including color image reconstruction.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Opt Express Asunto de la revista: OFTALMOLOGIA Año: 2023 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Opt Express Asunto de la revista: OFTALMOLOGIA Año: 2023 Tipo del documento: Article Pais de publicación: Estados Unidos