Your browser doesn't support javascript.
loading
Self-Assembled Nano-PROTAC Enables Near-Infrared Photodynamic Proteolysis for Cancer Therapy.
Wang, Weishan; Zhu, Chenghong; Zhang, Bin; Feng, Yi; Zhang, Yan; Li, Jinbo.
Afiliación
  • Wang W; State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
  • Zhu C; State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
  • Zhang B; State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
  • Feng Y; State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
  • Zhang Y; State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
  • Li J; State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
J Am Chem Soc ; 145(30): 16642-16649, 2023 08 02.
Article en En | MEDLINE | ID: mdl-37477624
Confining the protein degradation activity of proteolysis-targeting chimera (PROTAC) to cancer lesions ensures precision treatment. However, it still remains challenging to precisely control PROTAC function in tumor regions in vivo. We herein describe a near-infrared (NIR) photoactivatable nano-PROTAC (NAP) for remote-controllable proteolysis in tumor-bearing mice. NAP is formed by molecular self-assembly from an amphiphilic conjugate of PROTAC linked with an NIR photosensitizer through a singlet oxygen (1O2)-cleavable linker. The activity of PROTAC is initially silenced but can be remotely switched on upon NIR photoirradiation to generate 1O2 by the photosensitizer. We demonstrated that NAP enabled tumor-specific degradation of bromodomain-containing protein 4 (BRD4) in an NIR light-instructed manner. This in combination with photodynamic therapy (PDT) elicited an effective suppression of tumor growth. This work thus presents a novel approach for spatiotemporal control over targeted protein degradation by PROTAC.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Fotoquimioterapia / Neoplasias Límite: Animals Idioma: En Revista: J Am Chem Soc Año: 2023 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Fotoquimioterapia / Neoplasias Límite: Animals Idioma: En Revista: J Am Chem Soc Año: 2023 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos