Your browser doesn't support javascript.
loading
Lipid homeostasis is essential for a maximal ER stress response.
Garcia, Gilberto; Zhang, Hanlin; Moreno, Sophia; Tsui, C Kimberly; Webster, Brant Michael; Higuchi-Sanabria, Ryo; Dillin, Andrew.
Afiliación
  • Garcia G; Department of Molecular & Cellular Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States.
  • Zhang H; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, United States.
  • Moreno S; Department of Molecular & Cellular Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States.
  • Tsui CK; Department of Molecular & Cellular Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States.
  • Webster BM; Department of Molecular & Cellular Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States.
  • Higuchi-Sanabria R; Department of Molecular & Cellular Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States.
  • Dillin A; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, United States.
Elife ; 122023 07 25.
Article en En | MEDLINE | ID: mdl-37489956
ABSTRACT
Changes in lipid metabolism are associated with aging and age-related diseases, including proteopathies. The endoplasmic reticulum (ER) is uniquely a major hub for protein and lipid synthesis, making its function essential for both protein and lipid homeostasis. However, it is less clear how lipid metabolism and protein quality may impact each other. Here, we identified let-767, a putative hydroxysteroid dehydrogenase in Caenorhabditis elegans, as an essential gene for both lipid and ER protein homeostasis. Knockdown of let-767 reduces lipid stores, alters ER morphology in a lipid-dependent manner, and blocks induction of the Unfolded Protein Response of the ER (UPRER). Interestingly, a global reduction in lipogenic pathways restores UPRER induction in animals with reduced let-767. Specifically, we find that supplementation of 3-oxoacyl, the predicted metabolite directly upstream of let-767, is sufficient to block induction of the UPRER. This study highlights a novel interaction through which changes in lipid metabolism can alter a cell's response to protein-induced stress.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Respuesta de Proteína Desplegada / Estrés del Retículo Endoplásmico Límite: Animals Idioma: En Revista: Elife Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Respuesta de Proteína Desplegada / Estrés del Retículo Endoplásmico Límite: Animals Idioma: En Revista: Elife Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos