Your browser doesn't support javascript.
loading
Within-Modality Synthesis and Novel Radiomic Evaluation of Brain MRI Scans.
Rezaeijo, Seyed Masoud; Chegeni, Nahid; Baghaei Naeini, Fariborz; Makris, Dimitrios; Bakas, Spyridon.
Afiliación
  • Rezaeijo SM; Department of Medical Physics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
  • Chegeni N; Department of Medical Physics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
  • Baghaei Naeini F; Faculty of Engineering, Computing and the Environment, Kingston University, Penrhyn Road Campus, Kingston upon Thames, London KT1 2EE, UK.
  • Makris D; Faculty of Engineering, Computing and the Environment, Kingston University, Penrhyn Road Campus, Kingston upon Thames, London KT1 2EE, UK.
  • Bakas S; Faculty of Engineering, Computing and the Environment, Kingston University, Penrhyn Road Campus, Kingston upon Thames, London KT1 2EE, UK.
Cancers (Basel) ; 15(14)2023 Jul 10.
Article en En | MEDLINE | ID: mdl-37509228
One of the most common challenges in brain MRI scans is to perform different MRI sequences depending on the type and properties of tissues. In this paper, we propose a generative method to translate T2-Weighted (T2W) Magnetic Resonance Imaging (MRI) volume from T2-weight-Fluid-attenuated-Inversion-Recovery (FLAIR) and vice versa using Generative Adversarial Networks (GAN). To evaluate the proposed method, we propose a novel evaluation schema for generative and synthetic approaches based on radiomic features. For the evaluation purpose, we consider 510 pair-slices from 102 patients to train two different GAN-based architectures Cycle GAN and Dual Cycle-Consistent Adversarial network (DC2Anet). The results indicate that generative methods can produce similar results to the original sequence without significant change in the radiometric feature. Therefore, such a method can assist clinics to make decisions based on the generated image when different sequences are not available or there is not enough time to re-perform the MRI scans.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Cancers (Basel) Año: 2023 Tipo del documento: Article País de afiliación: Irán Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Cancers (Basel) Año: 2023 Tipo del documento: Article País de afiliación: Irán Pais de publicación: Suiza