Your browser doesn't support javascript.
loading
Enhanced degradation of VOCs from biomass gasification catalyzed by Ni/HZSM-5 series catalyst.
Liu, Peng; Chen, Zhuo; Li, Xueqin; Chen, Wenxuan; Li, Yanling; Sun, Tanglei; Yang, Yantao; Lei, Tingzhou.
Afiliación
  • Liu P; National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Changzhou Key Laboratory of Biomass Green- Safe & High Value Utilization Technology, Institute of Urban and Rural Mining, Changzhou University, Jiangsu, 213164, China.
  • Chen Z; School of Management and Economics, North China University of Water Resources and Electric Power, Zhengzhou, 450046, China. Electronic address: chenzhuo@ncwu.edu.cn.
  • Li X; National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Changzhou Key Laboratory of Biomass Green- Safe & High Value Utilization Technology, Institute of Urban and Rural Mining, Changzhou University, Jiangsu, 213164, China. Electronic address: lixqvbioe
  • Chen W; National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Changzhou Key Laboratory of Biomass Green- Safe & High Value Utilization Technology, Institute of Urban and Rural Mining, Changzhou University, Jiangsu, 213164, China.
  • Li Y; National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Changzhou Key Laboratory of Biomass Green- Safe & High Value Utilization Technology, Institute of Urban and Rural Mining, Changzhou University, Jiangsu, 213164, China.
  • Sun T; National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Changzhou Key Laboratory of Biomass Green- Safe & High Value Utilization Technology, Institute of Urban and Rural Mining, Changzhou University, Jiangsu, 213164, China.
  • Yang Y; National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Changzhou Key Laboratory of Biomass Green- Safe & High Value Utilization Technology, Institute of Urban and Rural Mining, Changzhou University, Jiangsu, 213164, China.
  • Lei T; National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Changzhou Key Laboratory of Biomass Green- Safe & High Value Utilization Technology, Institute of Urban and Rural Mining, Changzhou University, Jiangsu, 213164, China.
J Environ Manage ; 345: 118661, 2023 Nov 01.
Article en En | MEDLINE | ID: mdl-37515885
ABSTRACT
Volatile organic compounds (VOCs) evolved from biomass gasification plays a positive role in the formation of PM2.5 and odor pollution. In order to improve the removal rate of various VOCs produced by biomass gasification, a nickel-based supported HZSM-5 cataly st (Ni/HZSM-5 and Ni-Ca-Co/HZSM-5) was prepared by different auxiliary methods, Ni loadings, and pyrolysis temperatures. The catalytic cracking performance of Ni/HZSM-5 catalysts for different VOCs model compounds such as toluene, phenol, furan, acetic acid and cyclohexane were studied in a fixed-bed reactor. The catalysts were further characterized and analyzed by XRD, SEM, XPS and BET. The results showed that the Ni/HZSM--C-Co5 catalyst prepared by ultrasonic-assisted excess impregnation method with Ni loading of 8 wt%, Ca loading of 4 wt%, Co loading of 0.1 wt% had strong catalytic activity for VOCs degradation. With the increase of the cracking temperature, the conversion rate and gas yield of from model compound cracking improved significantly. At 800 °C, the conversion of each model compound was more than 90%, accompanied by the generation of cracking gases such as H2 and CH4. The selectivity of H2 and CH4 from toluene cracking reached 93%, and cyclohexane reached 98%. The models with higher oxygen content and lower bond energy were more likely to undergo reforming reaction to form small molecular gas. Model compounds with large molecular weight and high carbon content provided more carbon sources. Under the conversion degree towards the gas direction was high. This study provides a new idea on the removal of VOCs for the efficient utilization of biomass resources.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Compuestos Orgánicos Volátiles Idioma: En Revista: J Environ Manage Año: 2023 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Compuestos Orgánicos Volátiles Idioma: En Revista: J Environ Manage Año: 2023 Tipo del documento: Article País de afiliación: China