Your browser doesn't support javascript.
loading
Boosting Water Evaporation by Construction of Photothermal Materials with a Biomimetic Black Soil Aggregate Structure.
Liu, Jing; Wang, Luoqing; Jia, Tao; Wang, Zuoyu; Xu, Tao; An, Nan; Zhao, Meng; Zhang, Ruoyu; Zhao, Xiuhua; Li, Chenglong.
Afiliación
  • Liu J; Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry Based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast F
  • Wang L; Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry Based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast F
  • Jia T; Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry Based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast F
  • Wang Z; Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry Based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast F
  • Xu T; Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry Based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast F
  • An N; Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry Based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast F
  • Zhao M; Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry Based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast F
  • Zhang R; Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry Based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast F
  • Zhao X; Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry Based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast F
  • Li C; State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China.
ACS Appl Mater Interfaces ; 15(31): 37609-37618, 2023 Aug 09.
Article en En | MEDLINE | ID: mdl-37523855
ABSTRACT
Solar-driven interfacial evaporation is considered an efficient way to get fresh water from seawater. However, the low evaporation rate, surface salt crystallization, and low energy collection of the photothermal evaporation layer limit its further application in an outdoor freshwater field. And the aggregate structure design of the material itself is often ignored in solar-driven water evaporation. Black soil (BS), with a unique soil aggregate structure, is rich in tubular pores, which can be used for multilevel sunlight utilization and good capillary water transport. Based on the extraordinary photothermal properties and pumping capacity of BS, a reasonable unidirectional salt-collecting device is designed, which can realize long-term collection of mineral salts and continuous evaporation of seawater and generate electric energy in the continuous evaporation. Inspired by the unique aggregate structure, the photothermal material doping of halloysite and nigrosin will simulate the generation of this aggregate structure and retain a good water transport effect while obtaining multistage utilization of sunlight. The solar-driven evaporation rate of a nigrosin-halloysite solar steam generator is 1.75 kg m-2 h-1 under 1 kW m-2 mimic solar radiation; it can achieve stable salt leaching-induced voltage generation of 240 mV. This work demonstrates not only a solar evaporator that can continuously achieve desalination but also the design strategy of BS-like aggregate photothermal materials, which promotes the development of low-cost resource recovery and energy generation for practical outdoor seawater desalination.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2023 Tipo del documento: Article Pais de publicación: EEUU / ESTADOS UNIDOS / ESTADOS UNIDOS DA AMERICA / EUA / UNITED STATES / UNITED STATES OF AMERICA / US / USA

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2023 Tipo del documento: Article Pais de publicación: EEUU / ESTADOS UNIDOS / ESTADOS UNIDOS DA AMERICA / EUA / UNITED STATES / UNITED STATES OF AMERICA / US / USA