Your browser doesn't support javascript.
loading
Arsenic disrupts extracellular vesicle-mediated signaling in regenerating myofibers.
Clemens, Zachary; Wang, Kai; Ambrosio, Fabrisia; Barchowsky, Aaron.
Afiliación
  • Clemens Z; Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, USA.
  • Wang K; Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Boston, Massachusetts, USA.
  • Ambrosio F; Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts, USA.
  • Barchowsky A; Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Boston, Massachusetts, USA.
Toxicol Sci ; 195(2): 231-245, 2023 09 28.
Article en En | MEDLINE | ID: mdl-37527016
ABSTRACT
Chronic exposure to environmental arsenic is a public health crisis affecting hundreds of millions of individuals worldwide. Though arsenic is known to contribute to many pathologies and diseases, including cancers, cardiovascular and pulmonary diseases, and neurological impairment, the mechanisms for arsenic-promoted disease remain unresolved. This is especially true for arsenic impacts on skeletal muscle function and metabolism, despite the crucial role that skeletal muscle health plays in maintaining cardiovascular health, systemic homeostasis, and cognition. A barrier to researching this area is the challenge of interrogating muscle cell-specific effects in biologically relevant models. Ex vivo studies investigating mechanisms for muscle-specific responses to arsenic or other environmental contaminants primarily utilize traditional 2-dimensional culture models that cannot elucidate effects on muscle physiology or function. Therefore, we developed a contractile 3-dimensional muscle construct model-composed of primary mouse muscle progenitor cells differentiated in a hydrogel matrix-to study arsenic exposure impacts on skeletal muscle regeneration. Muscle constructs exposed to low-dose (50 nM) arsenic exhibited reduced strength and myofiber diameter following recovery from muscle injury. These effects were attributable to dysfunctional paracrine signaling mediated by extracellular vesicles (EVs) released from muscle cells. Specifically, we found that EVs collected from arsenic-exposed muscle constructs recapitulated the inhibitory effects of direct arsenic exposure on myofiber regeneration. In addition, muscle constructs treated with EVs isolated from muscles of arsenic-exposed mice displayed significantly decreased strength. Our findings highlight a novel model for muscle toxicity research and uncover a mechanism of arsenic-induced muscle dysfunction by the disruption of EV-mediated intercellular communication.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Arsénico / Vesículas Extracelulares / Enfermedades Musculares Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Toxicol Sci Asunto de la revista: TOXICOLOGIA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Arsénico / Vesículas Extracelulares / Enfermedades Musculares Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Toxicol Sci Asunto de la revista: TOXICOLOGIA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos