Your browser doesn't support javascript.
loading
Architectural asymmetry enables DNA transport through the Helicobacter pylori cag type IV secretion system.
Ryan, Mackenzie E; Damke, Prashant P; Bryant, Caitlynn; Sheedlo, Michael J; Shaffer, Carrie L.
Afiliación
  • Ryan ME; Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, 40506, USA.
  • Damke PP; Department of Veterinary Sciences, University of Kentucky College of Agriculture, Lexington, KY, 40546, USA.
  • Bryant C; Department of Veterinary Sciences, University of Kentucky College of Agriculture, Lexington, KY, 40546, USA.
  • Sheedlo MJ; Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA.
  • Shaffer CL; Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, 40506, USA.
bioRxiv ; 2023 Jul 26.
Article en En | MEDLINE | ID: mdl-37546756
ABSTRACT
Structural asymmetry within secretion system architecture is fundamentally important for apparatus diversification and biological function. However, the mechanism by which symmetry mismatch contributes to nanomachine assembly and interkingdom effector translocation are undefined. Here, we show that architectural asymmetry orchestrates dynamic substrate selection and enables trans-kingdom DNA conjugation through the Helicobacter pylori cag type IV secretion system (cag T4SS). Structural analyses of asymmetric units within the cag T4SS periplasmic ring complex (PRC) revealed intermolecular π-π stacking interactions that coordinate DNA binding and license trans-kingdom conjugation without disrupting the translocation of protein and peptidoglycan effector molecules. Additionally, we identified a novel proximal translocation channel gating mechanism that regulates cargo loading and governs substrate transport across the outer membrane. We thus propose a model whereby the organization and geometry of architectural symmetry mismatch exposes π-π interfaces within the PRC to facilitate DNA transit through the cag T4SS translocation channel.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: BioRxiv Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: BioRxiv Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos