Your browser doesn't support javascript.
loading
Solvent-assisted synthesis of Ag2Se and Ag2S nanoparticles on carbon fabric for enhanced thermoelectric performance.
Vinodhini, J; Shalini, V; Harish, S; Ikeda, H; Archana, J; Navaneethan, M.
Afiliación
  • Vinodhini J; Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India.
  • Shalini V; Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India.
  • Harish S; Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India; Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka 432-801
  • Ikeda H; Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka 432-8011, Japan; Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka 432-8011, Japan.
  • Archana J; Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India.
  • Navaneethan M; Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India; Nanotechnology Research Center, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nad
J Colloid Interface Sci ; 651: 436-447, 2023 Dec.
Article en En | MEDLINE | ID: mdl-37556902
ABSTRACT
The challenge of developing low-cost, highly flexible, and high-performance thermoelectric (TE) materials persists due to the low thermoelectric efficiency of conducting polymers and the inflexibility of inorganic materials. In this study, we successfully integrated Ag2Se and Ag2S with highly conductive carbon fabric (CF) to produce a flexible thermoelectric material. A facile one-step solvothermal method was employed to synthesize the Ag2Se-CF and Ag2S-CF, which were then subjected to X-ray analysis to confine the phase formation of Ag2Se and Ag2S on the carbon fabric. The analysis revealed that Ag2Se and Ag2S nanoparticles were tightly packed on the surface of carbon fabric, and compositional analysis confirmed the interaction between the material and carbon fabric. The thermoelectric properties of Ag2Se-CF and Ag2S-CF were significantly altered due to carrier concentration and mobility variations, resulting in a low power factor of 6.7 µW/mK2 for Ag2Se-CF and a high-power factor of 24 µW/mK2 at 373 K for Ag2S-CF. The growth of Ag2Se-CF and Ag2S-CF on carbon fabric led to an enhancement in their thermoelectric properties. Further, TE legs were fabricated using the Ag2Se-CF (p-type) and Ag2S-CF (n-type), and the fabricated legs exhibited an output voltage of âˆ¼20 mV to âˆ¼86.65 mV at a temperature gradient (ΔT) of 3-8 K. This work represents a cutting-edge approach to the fabrication of high-performance, wearable thermoelectric devices.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Colloid Interface Sci Año: 2023 Tipo del documento: Article País de afiliación: India

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Colloid Interface Sci Año: 2023 Tipo del documento: Article País de afiliación: India