Your browser doesn't support javascript.
loading
Phospholipid tail asymmetry allows cellular adaptation to anoxic environments.
Panconi, Luca; Lorenz, Chris D; May, Robin C; Owen, Dylan M; Makarova, Maria.
Afiliación
  • Panconi L; Institute of Immunology and immunotherapy, School of Mathematics and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK.
  • Lorenz CD; Department of Physics, King's College London, London, UK.
  • May RC; Institute of Microbiology and Infection and School of Biosciences, University of Birmingham, Birmingham, UK.
  • Owen DM; Institute of Immunology and immunotherapy, School of Mathematics and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK.
  • Makarova M; School of Biosciences, Institute of Metabolism and Systems Research and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK. Electronic address: m.makarova@bham.ac.uk.
J Biol Chem ; 299(9): 105134, 2023 09.
Article en En | MEDLINE | ID: mdl-37562570
ABSTRACT
Membrane biophysical properties are critical to cell fitness and depend on unsaturated phospholipid acyl tails. These can only be produced in aerobic environments since eukaryotic desaturases require molecular oxygen. This raises the question of how cells maintain bilayer properties in anoxic environments. Using advanced microscopy, molecular dynamics simulations, and lipidomics by mass spectrometry we demonstrated the existence of an alternative pathway to regulate membrane fluidity that exploits phospholipid acyl tail length asymmetry, replacing unsaturated species in the membrane lipidome. We show that the fission yeast, Schizosaccharomyces japonicus, which can grow in aerobic and anaerobic conditions, is capable of utilizing this strategy, whereas its sister species, the well-known model organism Schizosaccharomyces pombe, cannot. The incorporation of asymmetric-tailed phospholipids might be a general adaptation to hypoxic environmental niches.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Fosfolípidos / Schizosaccharomyces / Adaptación Fisiológica / Anaerobiosis Idioma: En Revista: J Biol Chem Año: 2023 Tipo del documento: Article País de afiliación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Fosfolípidos / Schizosaccharomyces / Adaptación Fisiológica / Anaerobiosis Idioma: En Revista: J Biol Chem Año: 2023 Tipo del documento: Article País de afiliación: Reino Unido