Your browser doesn't support javascript.
loading
Golgi-dependent reactivation and regeneration of Drosophila quiescent neural stem cells.
Gujar, Mahekta R; Gao, Yang; Teng, Xiang; Deng, Qiannan; Lin, Kun-Yang; Tan, Ye Sing; Toyama, Yusuke; Wang, Hongyan.
Afiliación
  • Gujar MR; Neuroscience & Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore.
  • Gao Y; Neuroscience & Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore.
  • Teng X; Mechanobiology Institute, Level 5, T-lab Building, 5A Engineering Drive 1, Singapore 117411, Singapore.
  • Deng Q; Neuroscience & Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore.
  • Lin KY; Neuroscience & Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore.
  • Tan YS; Neuroscience & Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore.
  • Toyama Y; Mechanobiology Institute, Level 5, T-lab Building, 5A Engineering Drive 1, Singapore 117411, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore.
  • Wang H; Neuroscience & Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Integrative Sciences and Engineering Programme, National
Dev Cell ; 58(19): 1933-1949.e5, 2023 Oct 09.
Article en En | MEDLINE | ID: mdl-37567172
ABSTRACT
The ability of stem cells to switch between quiescent and proliferative states is crucial for maintaining tissue homeostasis and regeneration. In Drosophila, quiescent neural stem cells (qNSCs) extend a primary protrusion, a hallmark of qNSCs. Here, we have found that qNSC protrusions can be regenerated upon injury. This regeneration process relies on the Golgi apparatus that acts as the major acentrosomal microtubule-organizing center in qNSCs. A Golgi-resident GTPase Arf1 and its guanine nucleotide exchange factor Sec71 promote NSC reactivation and regeneration via the regulation of microtubule growth. Arf1 physically associates with its new effector mini spindles (Msps)/XMAP215, a microtubule polymerase. Finally, Arf1 functions upstream of Msps to target the cell adhesion molecule E-cadherin to NSC-neuropil contact sites during NSC reactivation. Our findings have established Drosophila qNSCs as a regeneration model and identified Arf1/Sec71-Msps pathway in the regulation of microtubule growth and NSC reactivation.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Dev Cell Asunto de la revista: EMBRIOLOGIA Año: 2023 Tipo del documento: Article País de afiliación: Singapur

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Dev Cell Asunto de la revista: EMBRIOLOGIA Año: 2023 Tipo del documento: Article País de afiliación: Singapur