Your browser doesn't support javascript.
loading
Antibiotic potentiation and inhibition of cross-resistance in pathogens associated with cystic fibrosis.
Kaderábková, Nikol; Furniss, R Christopher D; Maslova, Evgenia; Eisaiankhongi, Lara; Bernal, Patricia; Filloux, Alain; Landeta, Cristina; Gonzalez, Diego; McCarthy, Ronan R; Mavridou, Despoina A I.
Afiliación
  • Kaderábková N; Department of Molecular Biosciences, The University of Texas at Austin, Austin, 78712, Texas, USA.
  • Furniss RCD; Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK.
  • Maslova E; Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK.
  • Eisaiankhongi L; Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK.
  • Bernal P; Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK.
  • Filloux A; Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Seville, 41012, Spain.
  • Landeta C; Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK.
  • Gonzalez D; Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore.
  • McCarthy RR; Department of Biology, Indiana University, Bloomington, Indiana, 47405, USA.
  • Mavridou DAI; Laboratoire de Microbiologie, Institut de Biologie, Université de Neuchâtel, Neuchâtel, 2000, Switzerland.
bioRxiv ; 2023 Aug 02.
Article en En | MEDLINE | ID: mdl-37577508
ABSTRACT
Critical Gram-negative pathogens, like Pseudomonas, Stenotrophomonas and Burkholderia, have become resistant to most antibiotics. Complex resistance profiles together with synergistic interactions between these organisms increase the likelihood of treatment failure in distinct infection settings, for example in the lungs of cystic fibrosis patients. Here, we discover that cell envelope protein homeostasis pathways underpin both antibiotic resistance and cross-protection in CF-associated bacteria. We find that inhibition of oxidative protein folding inactivates multiple species-specific resistance proteins. Using this strategy, we sensitize multi-drug resistant Pseudomonas aeruginosa to ß-lactam antibiotics and demonstrate promise of new treatment avenues for the recalcitrant pathogen Stenotrophomonas maltophilia. The same approach also inhibits cross-protection between resistant S. maltophilia and susceptible P. aeruginosa, allowing eradication of both commonly co-occurring CF-associated organisms. Our results provide the basis for the development of next-generation strategies that target antibiotic resistance, while also impairing specific interbacterial interactions that enhance the severity of polymicrobial infections.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Risk_factors_studies Idioma: En Revista: BioRxiv Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Risk_factors_studies Idioma: En Revista: BioRxiv Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos