Structure-Based Design of Transport-Specific Multitargeted One-Carbon Metabolism Inhibitors in Cytosol and Mitochondria.
J Med Chem
; 66(16): 11294-11323, 2023 08 24.
Article
en En
| MEDLINE
| ID: mdl-37582241
Multitargeted agents provide tumor selectivity with reduced drug resistance and dose-limiting toxicities. We previously described the multitargeted 6-substituted pyrrolo[3,2-d]pyrimidine antifolate 1 with activity against early- and late-stage pancreatic tumors with limited tumor selectivity. Structure-based design with our human serine hydroxymethyl transferase (SHMT) 2 and glycinamide ribonucleotide formyltransferase (GARFTase) structures, and published X-ray crystal structures of 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/inosine monophosphate cyclohydrolase (ATIC), SHMT1, and folate receptor (FR) α and ß afforded 11 analogues. Multitargeted inhibition and selective tumor transport were designed by providing promiscuous conformational flexibility in the molecules. Metabolite rescue identified mitochondrial C1 metabolism along with de novo purine biosynthesis as the targeted pathways. We identified analogues with tumor-selective transport via FRs and increased SHMT2, SHMT1, and GARFTase inhibition (28-, 21-, and 11-fold, respectively) compared to 1. These multitargeted agents represent an exciting new structural motif for targeted cancer therapy with substantial advantages of selectivity and potency over clinically used antifolates.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Transferasas de Hidroximetilo y Formilo
/
Antagonistas del Ácido Fólico
/
Neoplasias
/
Antineoplásicos
Límite:
Humans
Idioma:
En
Revista:
J Med Chem
Asunto de la revista:
QUIMICA
Año:
2023
Tipo del documento:
Article
País de afiliación:
Estados Unidos
Pais de publicación:
Estados Unidos