Your browser doesn't support javascript.
loading
Oxygen vacancies in MnOx regulating reaction kinetics for aqueous zinc-ion batteries.
Xu, Yuhui; Zhang, Gaini; Zhang, Jianhua; Wang, Xiaoxue; Wang, Jingjing; Jia, Shuting; Yuan, Yitong; Yang, Xiaoli; Xu, Kaihua; Wang, Chunran; Zhang, Kun; Li, Wenbin; Li, Xifei.
Afiliación
  • Xu Y; Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Institute of Advanced Electrochemical Energy & School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China; Engineering Research Center of Conducting Materials and
  • Zhang G; Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Institute of Advanced Electrochemical Energy & School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China; Engineering Research Center of Conducting Materials and
  • Zhang J; Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Institute of Advanced Electrochemical Energy & School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China; Engineering Research Center of Conducting Materials and
  • Wang X; Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Institute of Advanced Electrochemical Energy & School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China; Engineering Research Center of Conducting Materials and
  • Wang J; Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Institute of Advanced Electrochemical Energy & School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China; Engineering Research Center of Conducting Materials and
  • Jia S; Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Institute of Advanced Electrochemical Energy & School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China; Engineering Research Center of Conducting Materials and
  • Yuan Y; Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Institute of Advanced Electrochemical Energy & School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China; Engineering Research Center of Conducting Materials and
  • Yang X; Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Institute of Advanced Electrochemical Energy & School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China; Engineering Research Center of Conducting Materials and
  • Xu K; GEM Co., Ltd., Shenzhen 518101, China.
  • Wang C; Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Institute of Advanced Electrochemical Energy & School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China; Engineering Research Center of Conducting Materials and
  • Zhang K; GEM Co., Ltd., Shenzhen 518101, China.
  • Li W; Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Institute of Advanced Electrochemical Energy & School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China; Engineering Research Center of Conducting Materials and
  • Li X; Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Institute of Advanced Electrochemical Energy & School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China; Engineering Research Center of Conducting Materials and
J Colloid Interface Sci ; 652(Pt A): 305-316, 2023 Dec 15.
Article en En | MEDLINE | ID: mdl-37597412
MnO2 cathode materials have presented challenges due to their poor conductivity, unstable structure, and sluggish diffusion kinetics for aqueous zinc-ion batteries (AZIBs). In this study, a nanostructured MnOx cathode material was synthesized using an acid etching method, Which introduced abundant Mn(III) sites, resulting in the formation of numerous oxygen vacancies. Comprehensive characterizations revealed that these oxygen vacancies facilitated the reversible adsorption/desorption of Zn2+ ions and promoted efficient electron transfer. In addition, the designed mesoporous structure offered ample active sites and shortened the diffusion path for Zn2+ and H+ ions. Consequently, the nanosized MnOx cathode exhibited enhanced reaction kinetics, achieving a considerable reversible specific capacity of 388.7 mAh/g at 0.1 A/g and superior durability with 72.0% capacity retention over 2000 cycles at 3.0 A/g. The material delivered a maximum energy density of 639.7 Wh kg-1 at 159.94 W kg-1. Furthermore, a systematic analysis of the zinc storage mechanism was performed. This work demonstrates that engineering oxygen vacancies with nanostructure regulation provides valuable insights into optimizing MnO2 cathode materials for AZIBs.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Colloid Interface Sci Año: 2023 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Colloid Interface Sci Año: 2023 Tipo del documento: Article Pais de publicación: Estados Unidos